
Geometry Overview and Outline

Flugs

• Axiomatic systems by example: Scorpling Flugs

• Introduced the formalist position that

1. undefined terms are ‘meaningless’

2. meaning is obtained through models (examples of the system)

3. Systems are abstract: models are specific (but are parts of other abstract logical systems:
e.g., hyperbolic model in terms of Euclidean geometry.)

Logic

• Basics of the predicate calculus: an axiomatic system (not in depth)

• Truth tables of basic predicates

• Quantifiers are essential.

• Justifications for methods of proof

1. Direct (H ∧ (H ⇒ C))⇒ C (Modus Ponens)

2. Contrapositive: (H ⇒ C)⇐⇒ (˜C ⇒ ˜H)

3. Contradiction: ((H ∧ ˜C)⇒ (D ∧ ˜D))⇒ C

Proof Techniques:

• Forward-Backward analysis

• Add structure:

1. Proof by cases

2. Focus on a local situation

3. “Find something that works”

4. Proof by contradiction

• Remove structure (generalize)

1. Remove a hypothesis

2. Refuse to use a particular axiom
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Geometry

The Buildup

• Incidence geometry and what is deducible therefrom

1. Introduction to models and their value with respect to unprovability and independence.

(a) Any statement that “does not make sense” in a model, cannot be deduced from the
axioms.

(b) The exact meaning of “does not make sense” in a model is that the interpreted state-
ment cannot be proven in the axiomatic system in which the model is interpreted.
Example: In Chapter 7 we have the Klein interpretation of hyperbolic geometry in
terms of Euclidean objects. Thus, a hyperbolic statement S “makes sense” in the
Klein interpretation if and only if we can use the Euclidean axioms to prove the
Euclidean statement T that is the Klein interpretation of S.

2. Finite geometries

3. Projective planes

(a) Order, number of points, number of lines

4. Projective completions of affine planes.

• Betweenness and Incidence geometry

• Congruence, Betweenness and Incidence geometry

• Continuity, Congruence, Betweenness and Incidence geometry

1. Sophistication of Dedekind’s axiom. We used only once (in chapter 7)

Neutral geometry

• The common structure of both Euclidean and hyperbolic geometry

• Equivalents of Euclid V

1. We know at least 10

2. These define a ‘conceptual boundary’ distinguishing what can be proven in Euclidean
geometry from what can be proven in hyperbolic geometry.

3. Specifically, the only statements in neutral geometry that are equivalent to Hilbert’s par-
allel property are the ones that are theorems of Euclidean geometry and whose negations
are theorems of hyperbolic geometry.

Hyperbolic geometry

• What new (and possibly counter-intuitive) results can be deduced if we add the negation of
Hilbert to the axioms of neutral geometry.

• Our fundamental tool was that rectangles do not exist.
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Meta Mathematics

• Theorem: If Euclidean geometry is consistent then so is hyperbolic geometry.

– Corollary: If you can prove that Euclid V (or its negation) follows from the axioms of
neutral geometry, then Euclidean geometry is inconsistent.

• Method of proof of the Meta Mathematical Theorem

1. Construct a model of hyperbolic geometry inside Euclidean geometry.

2. Expect to have to explain

(a) What it means for a model to be “inside” Euclidean geometry

(b) The details of why the existence of such a model proves the Meta theorem.

• The actual proof

1. (Congruence Axiom 6 involves much study of inversion in Euclidean circles which we did
not cover in class. )

2. Defined the Klein and Poincaré disk interpretations

3. Showed some hyperbolic axioms held in Klein

4. Exhibited an isomorphism (neglecting congruence) between Klein and Poincaré that
preserved points, lines, incidence, and betweenness.

5. Showed the congruence axioms held in Poincaré disk and defined the interpretation of
congruence in the Klein disk so that the isomorphism preserved congruence as well.

6. Thus, both Klein and Poincaré disks are models of hyperbolic geometry in Euclidean
geometry.
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