Due April 9, 2004

## Collaborators

Name
Directions: Be sure to follow the guidelines for writing up projects as specified in the course information sheet (passed out on the first day of class). Whenever appropriate, use in-line citations, including page numbers and people consulted when you present information obtained from discussion, a text, notes, or technology. Only write on one side of each page.
"No, no, you're not thinking, you're just being logical." -Niels Bohr, physicist (1885-1962)

## Project Description

In this project we will be finding the "volume" of spherical balls in various dimensions.
We are all familiar with the idea of a spherical ball in dimension 3. Basketballs, softballs, soccer balls are all good images to keep in mind. However, the mathematical definition of a 3 - dimensional ball (of radius $R$ ) is the set

$$
B^{3}=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq R^{2}\right\}
$$

In a similar fashion we can define balls for all of the other positive dimensions as follows.

$$
\begin{aligned}
B^{1}= & \left\{x: x^{2} \leq R^{2}\right\} \\
B^{2}= & \left\{(x, y): x^{2}+y^{2} \leq R^{2}\right\} \\
B^{3}= & \left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq R^{2}\right\} \\
B^{4}= & \left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \leq R^{2}\right\} \\
& \vdots \\
B^{n}= & \left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right): x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \leq R^{2}\right\}
\end{aligned}
$$

Now, let $V_{n}$ denote the volume of the $n$ - dimensional ball $B^{n}$ and use polar coordinates in the first two coordinate positions for points in $\mathbf{R}^{n}$. That is, each point of $\mathbf{R}^{n}$ can be written in the form $\left(r, \theta, x_{3}, \cdots x_{n}\right)$ where $r=\sqrt{x_{1}^{2}+x_{2}^{2}}$ and $\tan (\theta)=\frac{x_{2}}{x_{1}}$.
Here is another description of $B^{n}$.

$$
\begin{aligned}
B^{n} & =\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right): x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \leq R^{2}\right\} \\
& =\left\{\left(r, \theta, \cdots, x_{n}\right): r^{2}+x_{3}^{2}+\cdots+x_{n}^{2} \leq R^{2}, 0 \leq r \leq R, 0 \leq \theta \leq 2 \pi\right\} \\
& =\left\{\left(r, \theta, \cdots, x_{n}\right): x_{3}^{2}+\cdots+x_{n}^{2} \leq R^{2}-r^{2}, 0 \leq r \leq R, 0 \leq \theta \leq 2 \pi\right\}
\end{aligned}
$$

This tells us that $B^{n}$ is the union all of the $(n-2)$ - dimensional balls of radius $\sqrt{R^{2}-r^{2}}$ that we get as we range $r$ from 0 to $R$ and $\theta$ from 0 to $2 \pi$. It is also easy to see that if $V_{n-2}$ is the volume of the $(n-2)$ - dimensional ball of radius $R$ then the volume of the $(n-2)$ - dimensional ball of radius $\sqrt{R^{2}-r^{2}}$ is

$$
\left(\frac{\sqrt{R^{2}-r^{2}}}{R}\right)^{n-2} V_{n-2}
$$

1. Write an iterated double integral, $I$, in polar coordinates that gives the volume $V_{n}$ of the $n$-dimensional ball of radius $R$ in terms of the volume of the $(n-2)$ - dimensional ball of radius $R$.
2. Write out the numerical values for $V_{1}$ and $V_{2}$ and use these and your formula from part 1. to compute $V_{3}, V_{4}, V_{5}$ and $V_{6}$.
