Due: March 5

Collaborators

Name

Directions: Be sure to follow the guidelines for writing up projects as specified in the course information sheet (passed out on the first day of class). Whenever appropriate, use in-line citations, including page numbers and people consulted when you present information obtained from discussion, a text, notes, or technology. Only write on one side of each page.
"Thought is only a flash between two long nights, but this flash is everything." - Poincaré, Jules Henri (1854-1912)

Project Description

For this project please submit your efforts on exactly one (1) of the following. (However, you should be able to do every problem in the list.)

1. If f and all of its partial derivatives are continuous and $f_{x}(a, b)>0, f_{y}(a, b)<0, f_{x x}(a, b)>0$, $f_{x y}(a, b)<0, f_{y y}(a, b)>0$, then these derivatives give us information about the shape of the surface that is the graph of $z=f(x, y)$ near $(a, b, f(a, b))$. Using the convention that the positive y-axis points to the North and the positive x-axis points to the East, carefully describe the terrain of this surface near $(a, b, f(a, b))$ as you look in the eight principle directions: $\mathrm{N}, \mathrm{S}, \mathrm{E}, \mathrm{W}, \mathrm{NE}, \mathrm{NW}, \mathrm{SE}$, and SW.
2. Assume that $h(x, t), f(x)$, and $g(x)$ are differentiable. Use chain rule methods to carefully show any function of the form

$$
z=h(x, t)=f(x+a t)+g(x-a t)
$$

is a solution of the wave equation

$$
\frac{\partial^{2} z}{\partial t^{2}}=a^{2} \frac{\partial^{2} z}{\partial x^{2}}
$$

