Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg

Undefined Terms: Point, Line, Incident, Between, Congruent.

Incidence Axioms:

IA1: For every two distinct points there exists a unique line incident on them.

IA2: For every line there exist at least two points incident on it.

IA3: There exist three distinct points such that no line is incident on all three.

Incidence Propositions:

P2.1: If l and m are distinct lines that are non-parallel, then l and m have a unique point in common.

P2.2: There exist three distinct lines such that no point lies on all three.

P2.3: For every line there is at least one point not lying on it.

P2.4: For every point there is at least one line not passing through it.

P2.5: For every point there exist at least two distinct lines that pass through it.

Betweenness Axioms:

B1: If A * B * C, then A, B, and C are three distinct points all lying on the same line, and C * B * A.

B2: Given any two distinct points B and D, there exist points A, C, and E lying on \overrightarrow{BD} such that A*B*D, B*C*D, and B*D*E.

B3: If A, B, and C are three distinct points lying on the same line, then one and only one of them is between the other two.

B4: For every line l and for any three points A, B, and C not lying on l:

- 1. If A and B are on the same side of l, and B and C are on the same side of l, then A and C are on the same side of l.
- 2. If A and B are on opposite sides of l, and B and C are on opposite sides of l, then A and C are on the same side of l.

Corollary If A and B are on opposite sides of l, and B and C are on the same side of l, then A and C are on opposite sides of l.

Betweenness Definitions:

Segment AB: Point A, point B, and all points P such that A*P*B.

Ray \overrightarrow{AB} : Segment AB and all points C such that A*B*C.

Line \overrightarrow{AB} : Ray \overrightarrow{AB} and all points D such that D*A*B.

Same/Opposite Side: Let l be any line, A and B any points that do not lie on l. If A = B or if segment AB contains no point lying on l, we say A and B are on the same side of l, whereas if $A \neq B$ and segment AB does intersect l, we say that A and B are on opposite sides of l. The law of excluded middle tells us that A and B are either on the same side or on opposite sides of l.

Betweenness Propositions:

P3.1: For any two points A and B:

- 1. $\overrightarrow{AB} \cap \overrightarrow{BA} = AB$, and
- 2. $\overrightarrow{AB} \cup \overrightarrow{BA} = \overrightarrow{AB}$.

P3.2: Every line bounds exactly two half-planes and these half-planes have no point in common.

- Same Side Lemma: Given A*B*C and l any line other than line \overrightarrow{AB} meeting line \overrightarrow{AB} at point A, then B and C are on the same side of line l.
- **Opposite Side Lemma:** Given A*B*C and l any line other than line \overrightarrow{AB} meeting line \overrightarrow{AB} at point B, then A and C are on opposite sides of line l.
- **P3.3:** Given A*B*C and A*C*D. Then B*C*D and A*B*D.
- **P3.4:** If C*A*B and l is the line through A, B, and C, then for every point P lying on l, P either lies on ray \overrightarrow{AB} or on the opposite ray \overrightarrow{AC} .
- **P3.5:** Given A*B*C. Then $AC = AB \cup BC$ and B is the only point common to segments AB and BC.
- **P3.6:** Given A*B*C. Then B is the only point common to rays \overrightarrow{BA} and \overrightarrow{BC} , and $\overrightarrow{AB} = \overrightarrow{AC}$.
- **Pasch's Theorem:** If A, B, and C are distinct points and l is any line intersecting AB in a point between A and B, then l also intersects either AC, or BC. If C does not lie on l, then l does not intersect both AC and BC.

Angle Definitions:

- Interior: Given an angle $\not \subset CAB$, define a point D to be in the *interior* of $\not \subset CAB$ if D is on the same side of \overrightarrow{AC} as B and if D is also on the same side of \overrightarrow{AB} as C. Thus, the interior of an angle is the intersection of two half-planes. (Note: the interior does not include the angle itself, and points not on the angle and not in the interior are on the exterior).
- **Ray Betweenness:** Ray \overrightarrow{AD} is between rays \overrightarrow{AC} and \overrightarrow{AB} provided \overrightarrow{AB} and \overrightarrow{AC} are not opposite rays and D is interior to $\not\leftarrow CAB$.
- **Interior of a Triangle:** The interior of a triangle is the intersection of the interiors of its thee angles. Define a point to be *exterior* to the triangle if it in not in the interior and does not lie on any side of the triangle.

Triangle: The union of the three segments formed by three non-collinear points.

Angle Propositions:

- **P3.7:** Given an angle $\not\subset CAB$ and point D lying on line \overleftrightarrow{BC} . Then D is in the interior of $\not\subset CAB$ iff B*D*C.
- "Problem 9": Given a line l, a point A on l and a point B not on l. Then every point of the ray \overrightarrow{AB} (except A) is on the same side of l as B.
- **P3.8:** If *D* is in the interior of $\not\subset CAB$, then:
 - 1. so is every other point on ray \overrightarrow{AD} except A,
 - 2. no point on the opposite ray to \overrightarrow{AD} is in the interior of $\angle CAB$, and
 - 3. if C*A*E, then B is in the interior of $\angle DAE$.

P3.9:

- 1. If a ray r emanating from an exterior point of $\triangle ABC$ intersects side AB in a point between A and B, then r also intersects side AC or BC.
- 2. If a ray emanates from an interior point of $\triangle ABC$, then it intersects one of the sides, and if it does not pass through a vertex, then it intersects only one side.

Crossbar Theorem: If \overrightarrow{AD} is between \overrightarrow{AC} and \overrightarrow{AB} , then \overrightarrow{AD} intersects segment BC.

Congruence Axioms:

- C1: If A and B are distinct points and if A' is any point, then for each ray r emanating from A' there is a unique point B' on r such that $B' \neq A'$ and $AB \cong A'B'$.
- C2: If $AB \cong CD$ and $AB \cong EF$, then $CD \cong EF$. Moreover, every segment is congruent to itself.
- C3: If A*B*C, and A'*B'*C', $AB \cong A'B'$, and $BC \cong B'C'$, then $AC \cong A'C'$.
- C4: Given any $\not\subset BAC$ (where by definition of angle, \overrightarrow{AB} is not opposite to \overrightarrow{AC} and is distinct from \overrightarrow{AC}), and given any ray $\overrightarrow{A'B'}$ emanating from a point A', then there is a *unique* ray $\overrightarrow{A'C'}$ on a given side of line $\overrightarrow{A'B'}$ such that $\not\subset B'A'C' \cong \not\subset BAC$.
- C5: If $\not A \cong \not B$ and $\not A \cong \not C$, then $\not B \cong \not C$. Moreover, every angle is congruent to itself.
- C6 (SAS): If two sides and the included angle of one triangle are congruent respectively to two sides and the included angle of another triangle, then the two triangles are congruent.

Congruence Propositions:

- **P3.10:** If in $\triangle ABC$ we have $AB \cong AC$, then $\not < B \cong \not < C$.
- **P3.11:** If A*B*C, D*E*F, $AB \cong DE$, and $AC \cong DF$, then $BC \cong EF$.
- **P3.12:** Given $AC \cong DF$, then for any point B between A and C, there is a unique point E between D and F such that $AB \cong DE$.
- **P3.13:** 1. Exactly one of the following holds: AB < CD, $AB \cong CD$, or AB > CD.
 - 2. If AB < CD and $CD \cong EF$, then AB < EF.
 - 3. If AB > CD and $CD \cong EF$, then AB > EF.
 - 4. If AB < CD and CD < EF, then AB < EF.
- P3.14: Supplements of Congruent angles are congruent.
- **P3.15:** 1. Vertical angles are congruent to each other.
 - 2. An angle congruent to a right angle is a right angle.
- **P3.16:** For every line l and every point P there exists a line through P perpendicular to l.
- **P3.17 (ASA):** Given $\triangle ABC$ and $\triangle DEF$ with $\not A \cong \not \subset D$, $\not \subset C \cong \not \subset F$, and $AC \cong DF$, then $\triangle ABC \cong \triangle DEF$.
- **P3.18:** In in $\triangle ABC$ we have $\not \subset B \cong \not \subset C$, then $AB \cong AC$ and $\triangle ABC$ is isosceles.
- **P3.19:** Given \overrightarrow{BG} between \overrightarrow{BA} and \overrightarrow{BC} , \overrightarrow{EH} between \overrightarrow{ED} and \overrightarrow{EF} , $\not\prec CBG \cong \not\prec FEH$ and $\not\prec GBA \cong \not\prec HED$. Then $\not\prec ABC \cong \not\prec DEF$.
- **P3.20:** Given \overrightarrow{BG} between \overrightarrow{BA} and \overrightarrow{BC} , \overrightarrow{EH} between \overrightarrow{ED} and \overrightarrow{EF} , $\not\prec CBG \cong \not\prec FEH$ and $\not\prec ABC \cong \not\prec DEF$. Then $\not\prec GBA \cong \not\prec HED$.
- **P3.21:** 1. Exactly one of the following holds: $\langle P \rangle \langle Q, \langle P \rangle \rangle \langle Q$, or $\langle P \rangle \langle Q \rangle \langle Q \rangle \langle P \rangle \langle Q \rangle$
 - 2. If $\not P < \not Q$ and $\not Q \cong \not R$, then $\not P < \not R$.
 - 3. If $\not < P > \not < Q$ and $\not < Q \cong \not < R$, then $\not < P > \not < R$.
 - 4. If $\not P < \not Q$ and $\not Q < \not R$, then $\not P < \not R$.
- **P3.22** (SSS): Given $\triangle ABC$ and $\triangle DEF$. If $AB \cong DE$, $BC \cong EF$, and $AC \cong DF$, then $\triangle ABC \cong \triangle DEF$.
- P3.23: All right angles are congruent to each other.

Corollary (not numbered in text) If P lies on l then the perpendicular to l through P is unique.

Definitions:

Segment Inequality: AB < CD (or CD > AB) means that there exists a point E between C and D such that $AB \cong CE$.

Angle Inequality: $\not ABC < \not DEF$ means there is a ray \overrightarrow{EG} between \overrightarrow{ED} and \overrightarrow{EF} such that $\not ABC \cong \not ABC = \not ABC$.

Right Angle: An angle $\not \subset ABC$ is a right angle if has a supplementary angle to which it is congruent.

Parallel: Two lines *l* and *m* are parallel if they do not intersect, i.e., if no point lies on both of them.

Perpendicular: Two lines l and m are perpendicular if they intersect at a point A and if there is a ray \overrightarrow{AB} that is a part of l and a ray \overrightarrow{AC} that is a part of m such that $\not \prec BAC$ is a right angle.

Triangle Congruence and Similarity: Two triangles are congruent if a one-to-one correspondence can be set up between their vertices so that corresponding sides are congruent and corresponding angles are congruent. Similar triangles have this one-to-one correspondence only with their angles.

Circle (with center O and radius OA): The set of all points P such that OP is congruent to OA.

Triangle: The set of three distinct segments defined by three non-collinear points.

Continuity Axioms:

- **Archimedes' Axiom:** If AB and CD are any segments, then there is a number n such that if segment CD is laid off n times on the ray \overrightarrow{AB} emanating from A, then a point E is reached where $n \cdot CD \cong AE$ and B is between A and E.
- **Dedekind's Axiom:** Suppose that the set of all points on a line l is the union $\Sigma_1 \cup \Sigma_2$ of two nonempty subsets such that no point of Σ_1 is between two points of Σ_2 and visa versa. Then there is a unique point O lying on l such that P_1*O*P_2 if and only if one of P_1 , P_2 is in Σ_1 , the other in Σ_2 and $O \neq P_1$, P_2 . A pair of subsets Σ_1 and Σ_2 with the properties in this axiom is called a Dedekind cut of the line l.
- Continuity Principles: Circular Continuity Principle: If a circle γ has one point inside and one point outside another circle γ' , then the two circles intersect in two points.
 - **Elementary Continuity Principle:** In one endpoint of a segment is inside a circle and the other outside, then the segment intersects the circle.

Other Theorems, Propositions, and Corollaries in Neutral Geometry:

- **T4.1:** If two lines cut by a transversal have a pair of congruent alternate interior angles, then the two lines are parallel.
 - Corollary 1: Two lines perpendicular to the same line are parallel. Hence the perpendicular dropped from a point P not on line l to l is unique.
 - Corollary 2: If l is any line and P is any point not on l, there exists at least one line m through P parallel to l.
- **T4.2 (Exterior Angle Theorem):** An exterior angle of a triangle is greater than either remote interior angle.
- **T4.3** (see text for details): There is a unique way of assigning a degree measure to each angle, and, given a segment OI, called a unit segment, there is a unique way of assigning a length to each segment AB that satisfy our standard uses of angle and length.
 - Corollary 1: The sum of the degree measures of any two angles of a triangle is less than 180°.
 - **Corollary 2:** If A, B, and C are three noncollinear points, then $\overline{AC} < \overline{AB} + \overline{BC}$.
- **T4.4 (Saccheri-Legendre):** The sum of the degree measures of the three angles in any triangle is less than or equal to 180°.
 - Corollary 1: The sum of the degree measures of two angles in a triangle is less than or equal to the degree measure of their remote exterior angle.
 - Corollary 2: The sum of the degree measures of the angles in any convex quadrilateral is at most 360° (note: quadrilateral $\Box ABCD$ is convex if it has a pair of opposite sides such that each is contained in a half-plane bounded by the other.)
- **P4.1 (SAA):** Given $AC \cong DF$, $\not A \cong \not D$, and $\not B \cong \not E$. Then $\triangle ABC \cong \triangle DEF$.
- **P4.2:** Two right triangles are congruent if the hypotenuse and leg of one are congruent respectively to the hypotenuse and a leg of the other.
- **P4.3:** Every segment has a unique midpoint.

P4.4:

- 1. Every angle has a unique bisector.
- 2. Every segment has a unique perpendicular bisector.
- **P4.5:** In a triangle $\triangle ABC$, the greater angle lies opposite the greater side and the greater side lies opposite the greater angle, i.e., AB > BC if and only if $\not< C > \not< A$.
- **P4.6:** Given $\triangle ABC$ and $\triangle A'B'C'$, if $AB \cong A'B'$ and $BC \cong B'C'$, then $\not A = \not A'B'$ if and only if AC < A'C'.

Note: Statements up to this point are from or form neutral geometry. Choosing Hilbert's/Euclid's Axiom (the two are logically equivalent) or the Hyperbolic Axiom will make the geometry Euclidean or Hyperbolic, respectively.

Parallelism Axioms:

- **Hilbert's Parallelism Axiom for Euclidean Geometry:** For every line l and every point P not lying on l there is at most one line m through P such that m is parallel to l. (Note: it can be proved from the previous axioms that, assuming this axiom, there is **EXACTLY** one line m parallel to l [see T4.1 Corollary 2]).
- Euclid's Fifth Postulate: If two lines are intersected by a transversal in such a way that the sum of the degree measures of the two interior angles on one side of the transversal is less than 180°, then the two lines meet on that side of the transversal.
- **Hyperbolic Parallel Axiom:** There exist a line l and a point P not on l such that at least two distinct lines parallel to l pass through P.

Hilbert's Parallel Postulate is logically equivalent to the following:

- **T4.5:** Euclid's Fifth Postulate.
- P4.7: If a line intersects one of two parallel lines, then it also intersects the other.
- **P4.8:** Converse to Theorem 4.1.
- **P4.9:** If t is transversal to l and m, l||m, and $t \perp l$, then $t \perp m$.
- **P4.10:** If $k||l, m \perp k$, and $n \perp l$, then either m = n or m||n.
- **P4.11:** The angle sum of every triangle is 180°.
- Wallis: Given any triangle $\triangle ABC$ and given any segment DE. There exists a triangle $\triangle DEF$ (having DE as one of its sides) that is similar to $\triangle ABC$ (denoted $\triangle DEF \sim \triangle ABC$).
- Theorems 4.6 and 4.7 (see text) are used to prove P4.11. They define the *defect* of a triangle to be the 180° minus the angle sum, then show that if one defective triangle exists, then all triangles are defective. Or, in contrapositive form, if one triangle has angle sum 180°, then so do all others. They do not assume a parallel postulate.

Theorems Using the Parallel Axiom

- **Parallel Projection Theorem:** Given three parallel lines l, m, and n. Let t and t' be transversals to these parallels, cutting them in points A, B, and C and in points A', B', and C', respectively. Then $\overline{AB}/\overline{BC} = \overline{A'B'}/\overline{B'C'}$.
- Fundamental Theorem on Similar Triangles: Given $\triangle ABC \sim \triangle A'B'C'$. Then the corresponding sides are proportional.

HYPERBOLIC GEOMETRY

- **L6.1:** There exists a triangle whose angle sum is less than 180°.
- Universal Hyperbolic Theorem: In hyperbolic geometry, from every line l and every point P not on l there pass through P at least two distinct parallels to l.
- **T6.1:** Rectangles do not exist and all triangles have angle sum less than 180°.
 - Corollary: In hyperbolic geometry, all convex quadrilaterals have angle sum less than 360°.
- **T6.2:** If two triangles are similar, they are congruent.
- **T6.3:** If l and l' are any distinct parallel lines, then any set of points on l equidistant from l' has at most two points in it.
- **T6.4:** If l and l' are parallel lines for which there exists a pair of points A and B on l equidistant from l', then l and l' have a common perpendicular segment that is also the shortest segment between l and l'.
- **L6.2:** The segment joining the midpoints of the base and summit of a Saccheri quadrilateral is perpendicular to both the base and the summit, and this segment is shorter than the sides.
- **T6.5:** If lines l and l' have a common perpendicular MM', then they are parallel and MM' is unique. Moreover, if A and B are points on l such that M is the midpoint of segment AB, then A and B are equidistant from l'.
- **T6.6:** For every line l and every point P not on l, let Q be the foot of the perpendicular from P to l. Then there are two unique rays \overrightarrow{PX} and $\overrightarrow{PX'}$ on opposite sides of \overrightarrow{PQ} that do not meet l and have the property that a ray emanating from P meets l if and only if it is between \overrightarrow{PX} and $\overrightarrow{PX'}$. Moreover, these limiting rays are situated symmetrically about \overrightarrow{PQ} in the sense that $\not \subset XPQ \cong \not\subset X'PQ$.
- **T6.7:** Given m parallel to l such that m does not contain a limiting parallel ray to l in either direction. Then there exists a common perpendicular to m and l, which is unique.

Results from chapter 7 (Contextual definitions not included):

- **P7.1** 1. P = P' if and only if P lies on the circle of inversion γ .
 - 2. If P is inside γ then P' is outside γ , and if P is outside γ , then P' is inside γ .
 - 3. (P')' = P.
- **P7.2** Suppose P is inside γ . Let TU be the chord of γ which is perpendicular to \overrightarrow{OP} . Then the inverse P' of P is the pole of chord TU, i.e., the point of intersection of the tangents to γ at T and U.
- **P7.3** If P is outside γ , let Q be the midpoint of segment OP. Let σ be the circle with center Q and radius $\overline{OQ} = \overline{QP}$. Then σ cuts γ in two points T and U, \overrightarrow{PT} and \overrightarrow{PU} are tangent to γ , and the inverse P' of P is the intersection of TU and OP.
- **P7.4** Let T and U be points on γ that are not diametrically opposite and let P be the pole of TU. Then $PT \cong PU$, $\not \subset PTU \cong \not \subset PUT$, $\overrightarrow{OP} \perp \overrightarrow{TU}$, and the circle δ with center P and radius $\overline{PT} = \overline{PU}$ cuts γ orthogonally at T and U.
- **L7.1** Given that point O does not lie on circle δ .
 - 1. If two lines through O intersect δ in pairs of points (P_1, P_2) and (Q_1, Q_2) , respectively, then we have $(\overline{OP_1})(\overline{OP_2}) = (\overline{OQ_1})(\overline{OQ_2})$. This common product is called the *power* of O with respect to δ when O is outside of δ , and minus this number is called the power of O when O is inside δ .
 - 2. If O is outside δ and a tangent to δ from O touches δ at point T, then $(\overline{OT})^2$ equals the power of O with respect to δ .
- **P7.5** Let P be any point which does not lie on circle γ and which does not coincide with the center O of γ , and let δ be a circle through P. Then δ cuts γ orthogonally if and only if δ passes through the inverse point P' of P with respect to γ .