Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries by Marvin Jay Greenberg

Undefined Terms: Point, Line, Incident, Between, Congruent.

Incidence Axioms:

IA1: For every two distinct points there exists a unique line incident on them.
IA2: For every line there exist at least two points incident on it.
IA3: There exist three distinct points such that no line is incident on all three.

Incidence Propositions:

P2.1: If l and m are distinct lines that are non-parallel, then l and m have a unique point in common.
P2.2: There exist three distinct lines such that no point lies on all three.
$\mathbf{P 2 . 3}$: For every line there is at least one point not lying on it.
P2.4: For every point there is at least one line not passing through it.
P2.5: For every point there exist at least two distinct lines that pass through it.

Betweenness Axioms:

B1: If $A * B * C$, then A, B, and C are three distinct points all lying on the same line, and $C * B * A$.
B2: Given any two distinct points B and D, there exist points A, C, and E lying on $\overleftrightarrow{B D}$ such that $A * B * D$, $B * C * D$, and $B * D * E$.

B3: If A, B, and C are three distinct points lying on the same line, then one and only one of them is between the other two.

B4: For every line l and for any three points A, B, and C not lying on l :

1. If A and B are on the same side of l, and B and C are on the same side of l, then A and C are on the same side of l.
2. If A and B are on opposite sides of l, and B and C are on opposite sides of l, then A and C are on the same side of l.
Corollary If A and B are on opposite sides of l, and B and C are on the same side of l, then A and C are on opposite sides of l.

Betweenness Definitions:

Segment $A B$: Point A, point B, and all points P such that $A * P * B$.
Ray $\overrightarrow{A B}$: Segment $A B$ and all points C such that $A * B * C$.
Line $\overleftrightarrow{A B}$: Ray $\overrightarrow{A B}$ and all points D such that $D * A * B$.
Same/Opposite Side: Let l be any line, A and B any points that do not lie on l. If $A=B$ or if segment $A B$ contains no point lying on l, we say A and B are on the same side of l, whereas if $A \neq B$ and segment $A B$ does intersect l, we say that A and B are on opposite sides of l. The law of excluded middle tells us that A and B are either on the same side or on opposite sides of l.

Betweenness Propositions:

P3.1: For any two points A and B :

1. $\overrightarrow{A B} \cap \overrightarrow{B A}=A B$, and
2. $\overrightarrow{A B} \cup \overrightarrow{B A}=\overleftrightarrow{A B}$

P3.2: Every line bounds exactly two half-planes and these half-planes have no point in common.

Same Side Lemma: Given $A * B * C$ and l any line other than line $\overleftrightarrow{A B}$ meeting line $\overleftrightarrow{A B}$ at point A, then B and C are on the same side of line l.
Opposite Side Lemma: Given $A * B * C$ and l any line other than line $\overleftrightarrow{A B}$ meeting line $\overleftrightarrow{A B}$ at point B, then A and C are on opposite sides of line l.
P3.3: Given $A * B * C$ and $A * C * D$. Then $B * C * D$ and $A * B * D$.
P3.4: If $C * A * B$ and l is the line through A, B, and C, then for every point P lying on l, P either lies on ray $\overrightarrow{A B}$ or on the opposite ray $\overrightarrow{A C}$.
P3.5: Given $A * B * C$. Then $A C=A B \cup B C$ and B is the only point common to segments $A B$ and $B C$.
P3.6: Given $A * B * C$. Then B is the only point common to rays $\overrightarrow{B A}$ and $\overrightarrow{B C}$, and $\overrightarrow{A B}=\overrightarrow{A C}$.
Pasch's Theorem: If A, B, and C are distinct points and l is any line intersecting $A B$ in a point between A and B, then l also intersects either $A C$, or $B C$. If C does not lie on l, then l does not intersect both $A C$ and $B C$.

Angle Definitions:

Interior: Given an angle $\Varangle C A B$, define a point D to be in the interior of $\Varangle C A B$ if D is on the same side of $\overleftrightarrow{A C}$ as B and if D is also on the same side of $\overleftrightarrow{A B}$ as C. Thus, the interior of an angle is the intersection of two half-planes. (Note: the interior does not include the angle itself, and points not on the angle and not in the interior are on the exterior).
Ray Betweenness: Ray $\overrightarrow{A D}$ is between rays $\overrightarrow{A C}$ and $\overrightarrow{A B}$ provided $\overrightarrow{A B}$ and $\overrightarrow{A C}$ are not opposite rays and D is interior to $\Varangle C A B$.
Interior of a Triangle: The interior of a triangle is the intersection of the interiors of its thee angles. Define a point to be exterior to the triangle if it in not in the interior and does not lie on any side of the triangle.
Triangle: The union of the three segments formed by three non-collinear points.

Angle Propositions:

P3.7: Given an angle $\Varangle C A B$ and point D lying on line $\overleftrightarrow{B C}$. Then D is in the interior of $\Varangle C A B$ iff $B * D * C$.
"Problem 9": Given a line l, a point A on l and a point B not on l. Then every point of the ray $\overrightarrow{A B}$ (except $A)$ is on the same side of l as B.
P3.8: If D is in the interior of $\Varangle C A B$, then:

1. so is every other point on ray $\overrightarrow{A D}$ except A,
2. no point on the opposite ray to $\overrightarrow{A D}$ is in the interior of $\Varangle C A B$, and
3. if $C * A * E$, then B is in the interior of $\Varangle D A E$.

P3.9:

1. If a ray r emanating from an exterior point of $\triangle A B C$ intersects side $A B$ in a point between A and B, then r also intersects side $A C$ or $B C$.
2. If a ray emanates from an interior point of $\triangle A B C$, then it intersects one of the sides, and if it does not pass through a vertex, then it intersects only one side.
Crossbar Theorem: If $\overrightarrow{A D}$ is between $\overrightarrow{A C}$ and $\overrightarrow{A B}$, then $\overrightarrow{A D}$ intersects segment $B C$.

Congruence Axioms:

C1: If A and B are distinct points and if A^{\prime} is any point, then for each ray r emanating from A^{\prime} there is a unique point B^{\prime} on r such that $B^{\prime} \neq A^{\prime}$ and $A B \cong A^{\prime} B^{\prime}$.
C2: If $A B \cong C D$ and $A B \cong E F$, then $C D \cong E F$. Moreover, every segment is congruent to itself.
C3: If $A * B * C$, and $A^{\prime} * B^{\prime} * C^{\prime}, A B \cong A^{\prime} B^{\prime}$, and $B C \cong B^{\prime} C^{\prime}$, then $A C \cong A^{\prime} C^{\prime}$.
C4: Given any $\Varangle B A C$ (where by definition of angle, $\overrightarrow{A B}$ is not opposite to $\overrightarrow{A C}$ and is distinct from $\overrightarrow{A C}$), and given any ray $\overrightarrow{A^{\prime} B^{\prime}}$ emanating from a point A^{\prime}, then there is a unique ray $\overrightarrow{A^{\prime} C^{\prime}}$ on a given side of line $\overleftrightarrow{A^{\prime} B^{\prime}}$ such that $\Varangle B^{\prime} A^{\prime} C^{\prime} \cong \Varangle B A C$.
C5: If $\Varangle A \cong \Varangle B$ and $\Varangle A \cong \Varangle C$, then $\Varangle B \cong \Varangle C$. Moreover, every angle is congruent to itself.
C6 (SAS): If two sides and the included angle of one triangle are congruent respectively to two sides and the included angle of another triangle, then the two triangles are congruent.

Congruence Propositions:

P3.10: If in $\triangle A B C$ we have $A B \cong A C$, then $\Varangle B \cong \Varangle C$.
P3.11: If $A * B * C, D * E * F, A B \cong D E$, and $A C \cong D F$, then $B C \cong E F$.
P3.12: Given $A C \cong D F$, then for any point B between A and C, there is a unique point E between D and F such that $A B \cong D E$.
P3.13: 1. Exactly one of the following holds: $A B<C D, A B \cong C D$, or $A B>C D$.
2. If $A B<C D$ and $C D \cong E F$, then $A B<E F$.
3. If $A B>C D$ and $C D \cong E F$, then $A B>E F$.
4. If $A B<C D$ and $C D<E F$, then $A B<E F$.

P3.14: Supplements of Congruent angles are congruent.
P3.15: 1. Vertical angles are congruent to each other.
2. An angle congruent to a right angle is a right angle.

P3.16: For every line l and every point P there exists a line through P perpendicular to l.
P3.17 (ASA): Given $\triangle A B C$ and $\triangle D E F$ with $\Varangle A \cong \Varangle D, \Varangle C \cong \Varangle F$, and $A C \cong D F$, then $\triangle A B C \cong \triangle D E F$.
P3.18: In in $\triangle A B C$ we have $\Varangle B \cong \Varangle C$, then $A B \cong A C$ and $\triangle A B C$ is isosceles.
P3.19: Given $\overrightarrow{B G}$ between $\overrightarrow{B A}$ and $\overrightarrow{B C}, \overrightarrow{E H}$ between $\overrightarrow{E D}$ and $\overrightarrow{E F}, \Varangle C B G \cong \Varangle F E H$ and $\Varangle G B A \cong \Varangle H E D$. Then $\Varangle A B C \cong \Varangle D E F$.
P3.20: Given $\overrightarrow{B G}$ between $\overrightarrow{B A}$ and $\overrightarrow{B C}, \overrightarrow{E H}$ between $\overrightarrow{E D}$ and $\overrightarrow{E F}, \Varangle C B G \cong \Varangle F E H$ and $\Varangle A B C \cong \Varangle D E F$. Then $\Varangle G B A \cong \Varangle H E D$.
P3.21: 1. Exactly one of the following holds: $\Varangle P<\Varangle Q, \Varangle P \cong \Varangle Q$, or $\Varangle P>\Varangle Q$.
2. If $\Varangle P<\Varangle Q$ and $\Varangle Q \cong \Varangle R$, then $\Varangle P<\Varangle R$.
3. If $\Varangle P>\Varangle Q$ and $\Varangle Q \cong \Varangle R$, then $\Varangle P>\Varangle R$.
4. If $\Varangle P<\Varangle Q$ and $\Varangle Q<\Varangle R$, then $\Varangle P<\Varangle R$.

P3.22 (SSS): Given $\triangle A B C$ and $\triangle D E F$. If $A B \cong D E, B C \cong E F$, and $A C \cong D F$, then $\triangle A B C \cong \triangle D E F$.
P3.23: All right angles are congruent to each other.
Corollary (not numbered in text) If P lies on l then the perpendicular to l through P is unique.

Definitions:

Segment Inequality: $A B<C D$ (or $C D>A B$) means that there exists a point E between C and D such that $A B \cong C E$.

Angle Inequality: $\Varangle A B C<\Varangle D E F$ means there is a ray $\overrightarrow{E G}$ between $\overrightarrow{E D}$ and $\overrightarrow{E F}$ such that $\Varangle A B C \cong \Varangle G E F$.
Right Angle: An angle $\Varangle A B C$ is a right angle if has a supplementary angle to which it is congruent.
Parallel: Two lines l and m are parallel if they do not intersect, i.e., if no point lies on both of them.
Perpendicular: Two lines l and m are perpendicular if they intersect at a point A and if there is a ray $\overrightarrow{A B}$ that is a part of l and a ray $\overrightarrow{A C}$ that is a part of m such that $\Varangle B A C$ is a right angle.
Triangle Congruence and Similarity: Two triangles are congruent if a one-to-one correspondence can be set up between their vertices so that corresponding sides are congruent and corresponding angles are congruent. Similar triangles have this one-to-one correspondence only with their angles.

Circle (with center O and radius $O A$): The set of all points P such that $O P$ is congruent to $O A$.
Triangle: The set of three distinct segments defined by three non-collinear points.

Continuity Axioms:

Archimedes' Axiom: If $A B$ and $C D$ are any segments, then there is a number n such that if segment $C D$ is laid off n times on the ray $\overrightarrow{A B}$ emanating from A, then a point E is reached where $n \cdot C D \cong A E$ and B is between A and E.
Dedekind's Axiom: Suppose that the set of all points on a line l is the union $\Sigma_{1} \cup \Sigma_{2}$ of two nonempty subsets such that no point of Σ_{1} is between two points of Σ_{2} and visa versa. Then there is a unique point O lying on l such that $P_{1} * O * P_{2}$ if and only if one of P_{1}, P_{2} is in Σ_{1}, the other in Σ_{2} and $O \neq P_{1}, P_{2}$. A pair of subsets Σ_{1} and Σ_{2} with the properties in this axiom is called a Dedekind cut of the line l.

Continuity Principles: Circular Continuity Principle: If a circle γ has one point inside and one point outside another circle γ^{\prime}, then the two circles intersect in two points.
Elementary Continuity Principle: In one endpoint of a segment is inside a circle and the other outside, then the segment intersects the circle.

Other Theorems, Propositions, and Corollaries in Neutral Geometry:

T4.1: If two lines cut by a transversal have a pair of congruent alternate interior angles, then the two lines are parallel.
Corollary 1: Two lines perpendicular to the same line are parallel. Hence the perpendicular dropped from a point P not on line l to l is unique.
Corollary 2: If l is any line and P is any point not on l, there exists at least one line m through P parallel to l.
T4.2 (Exterior Angle Theorem): An exterior angle of a triangle is greater than either remote interior angle.
T4.3 (see text for details): There is a unique way of assigning a degree measure to each angle, and, given a segment $O I$, called a unit segment, there is a unique way of assigning a length to each segment $A B$ that satisfy our standard uses of angle and length.
Corollary 1: The sum of the degree measures of any two angles of a triangle is less than 180°.
Corollary 2: If A, B, and C are three noncollinear points, then $\overline{A C}<\overline{A B}+\overline{B C}$.
T4.4 (Saccheri-Legendre): The sum of the degree measures of the three angles in any triangle is less than or equal to 180°.
Corollary 1: The sum of the degree measures of two angles in a triangle is less than or equal to the degree measure of their remote exterior angle.
Corollary 2: The sum of the degree measures of the angles in any convex quadrilateral is at most 360° (note: quadrilateral $\square A B C D$ is convex if it has a pair of opposite sides such that each is contained in a half-plane bounded by the other.)
P4.1 (SAA): Given $A C \cong D F, \Varangle A \cong \Varangle D$, and $\Varangle B \cong \Varangle E$. Then $\triangle A B C \cong \triangle D E F$.
P4.2: Two right triangles are congruent if the hypotenuse and leg of one are congruent respectively to the hypotenuse and a leg of the other.
P4.3: Every segment has a unique midpoint.
P4.4:

1. Every angle has a unique bisector.
2. Every segment has a unique perpendicular bisector.

P4.5: In a triangle $\triangle A B C$, the greater angle lies opposite the greater side and the greater side lies opposite the greater angle, i.e., $A B>B C$ if and only if $\Varangle C>\Varangle A$.
P4.6: Given $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$, if $A B \cong A^{\prime} B^{\prime}$ and $B C \cong B^{\prime} C^{\prime}$, then $\Varangle B<\Varangle B^{\prime}$ if and only if $A C<A^{\prime} C^{\prime}$.

Note: Statements up to this point are from or form neutral geometry. Choosing Hilbert's/Euclid's Axiom (the two are logically equivalent) or the Hyperbolic Axiom will make the geometry Euclidean or Hyperbolic, respectively.

Parallelism Axioms:

Hilbert's Parallelism Axiom for Euclidean Geometry: For every line l and every point P not lying on l there is at most one line m through P such that m is parallel to l. (Note: it can be proved from the previous axioms that, assuming this axiom, there is EXACTLY one line m parallel to l [see T4.1 Corollary 2]).
Euclid's Fifth Postulate: If two lines are intersected by a transversal in such a way that the sum of the degree measures of the two interior angles on one side of the transversal is less than 180°, then the two lines meet on that side of the transversal.
Hyperbolic Parallel Axiom: There exist a line l and a point P not on l such that at least two distinct lines parallel to l pass through P.

Hilbert's Parallel Postulate is logically equivalent to the following:

T4.5: Euclid's Fifth Postulate.
P4.7: If a line intersects one of two parallel lines, then it also intersects the other.
P4.8: Converse to Theorem 4.1.
P4.9: If t is transversal to l and $m, l \| m$, and $t \perp l$, then $t \perp m$.
P4.10: If $k \| l, m \perp k$, and $n \perp l$, then either $m=n$ or $m \| n$.
P4.11: The angle sum of every triangle is 180°.
Wallis: Given any triangle $\triangle A B C$ and given any segment $D E$. There exists a triangle $\triangle D E F$ (having $D E$ as one of its sides) that is similar to $\triangle A B C$ (denoted $\triangle D E F \sim \triangle A B C$).

Theorems 4.6 and 4.7 (see text) are used to prove P4.11. They define the defect of a triangle to be the 180° minus the angle sum, then show that if one defective triangle exists, then all triangles are defective. Or, in contrapositive form, if one triangle has angle sum 180°, then so do all others. They do not assume a parallel postulate.

Theorems Using the Parallel Axiom

Parallel Projection Theorem: Given three parallel lines l, m, and n. Let t and t^{\prime} be transversals to these parallels, cutting them in points A, B, and C and in points A^{\prime}, B^{\prime}, and C^{\prime}, respectively. Then $\overline{A B} / \overline{B C}=$ $\overline{A^{\prime} B^{\prime}} / \overline{B^{\prime} C^{\prime}}$.
Fundamental Theorem on Similar Triangles: Given $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$. Then the corresponding sides are proportional.

HYPERBOLIC GEOMETRY

L6.1: There exists a triangle whose angle sum is less than 180°.
Universal Hyperbolic Theorem: In hyperbolic geometry, from every line l and every point P not on l there pass through P at least two distinct parallels to l.

T6.1: Rectangles do not exist and all triangles have angle sum less than 180°.
Corollary: In hyperbolic geometry, all convex quadrilaterals have angle sum less than 360°.
T6.2: If two triangles are similar, they are congruent.
T6.3: If l and l^{\prime} are any distinct parallel lines, then any set of points on l equidistant from l^{\prime} has at most two points in it.
T6.4: If l and l^{\prime} are parallel lines for which there exists a pair of points A and B on l equidistant from l^{\prime}, then l and l^{\prime} have a common perpendicular segment that is also the shortest segment between l and l^{\prime}.

L6.2: The segment joining the midpoints of the base and summit of a Saccheri quadrilateral is perpendicular to both the base and the summit, and this segment is shorter than the sides.
T6.5: If lines l and l^{\prime} have a common perpendicular $M M^{\prime}$, then they are parallel and $M M^{\prime}$ is unique. Moreover, if A and B are points on l such that M is the midpoint of segment $A B$, then A and B are equidistant from l^{\prime}.

T6.6: For every line l and every point P not on l, let Q be the foot of the perpendicular from P to l. Then there are two unique rays $\overrightarrow{P X}$ and $\overrightarrow{P X^{\prime}}$ on opposite sides of $\overleftrightarrow{P Q}$ that do not meet l and have the property that a ray emanating from P meets l if and only if it is between $\overrightarrow{P X}$ and $\overrightarrow{P X^{\prime}}$. Moreover, these limiting rays are situated symmetrically about $\overleftrightarrow{P Q}$ in the sense that $\Varangle X P Q \cong \Varangle X^{\prime} P Q$.
T6.7: Given m parallel to l such that m does not contain a limiting parallel ray to l in either direction. Then there exists a common perpendicular to m and l, which is unique.

Results from chapter 7 (Contextual definitions not included):

P7.1 1. $P=P^{\prime}$ if and only if P lies on the circle of inversion γ.
2. If P is inside γ then P^{\prime} is outside γ, and if P is outside γ, then P^{\prime} is inside γ.
3. $\left(P^{\prime}\right)^{\prime}=P$.

P7.2 Suppose P is inside γ. Let $T U$ be the chord of γ which is perpendicular to $\overleftrightarrow{O P}$. Then the inverse P^{\prime} of P is the pole of chord $T U$, i.e., the point of intersection of the tangents to γ at T and U.
P7.3 If P is outside γ, let Q be the midpoint of segment $O P$. Let σ be the circle with center Q and radius $\overline{O Q}=\overline{Q P}$. Then σ cuts γ in two points T and $U, \overleftrightarrow{P T}$ and $\overleftrightarrow{P U}$ are tangent to γ, and the inverse P^{\prime} of P is the intersection of $T U$ and $O P$.
P7.4 Let T and U be points on γ that are not diametrically opposite and let P be the pole of $T U$. Then $P T \cong P U, \Varangle P T U \cong \Varangle P U T, \overleftrightarrow{O P} \perp \overleftrightarrow{T U}$, and the circle δ with center P and radius $\overline{P T}=\overline{P U}$ cuts γ orthogonally at T and U.

L7.1 Given that point O does not lie on circle δ.

1. If two lines through O intersect δ in pairs of points $\left(P_{1}, P_{2}\right)$ and (Q_{1}, Q_{2}), respectively, then we have $\left(\overline{O P_{1}}\right)\left(\overline{O P_{2}}\right)=\left(\overline{O Q_{1}}\right)\left(\overline{O Q_{2}}\right)$. This common product is called the power of O with respect to δ when O is outside of δ, and minus this number is called the power of O when O is inside δ.
2. If O is outside δ and a tangent to δ from O touches δ at point T, then $(\overline{O T})^{2}$ equals the power of O with respect to δ.
P7.5 Let P be any point which does not lie on circle γ and which does not coincide with the center O of γ, and let δ be a circle through P. Then δ cuts γ orthogonally if and only if δ passes through the inverse point P^{\prime} of P with respect to γ.
