1 Problem Set 1

1.1 Rubik's Cube Problems.

1. Show that any subgroup H of S_{n} that contains at least one odd permutation has exactly the same number of odd permutations as even permutations.
2. Show that
(a) S_{n} is generated by the set of transpositions: $(1,2),(1,3), \cdots,(1, n)$.
(b) A_{n} is generated by the set of all 3 - cycles (or, show A_{n} is generated by the set of all disjoint pairs of transpositions.)
3. Find the cycle representations of $U R$
4. Using the $F^{2} R^{2}$ subgroup as your inspiration, find processes of the Rubik's Cube that have the effect of
(a) swapping the $u l$ cubelet with the $d l$ cubelet and the $u b$ cubelet with the $d b$ cubelet.
(b) swapping the ur cubelet with the $d r$ cubelet and the $u b$ cubelet with the $d b$ cubelet.
(c) swapping the $u f$ cubelet with the $d f$ cubelet and the $u l$ cubelet with the $d l$ cubelet.
(d) swapping the $f l$ cubelet with the $b l$ cubelet and the $u f$ cubelet with the $b f$ cubelet.
(e) swapping the $f r$ cubelet with the $b r$ cubelet and the $d f$ cubelet with the $d b$ cubelet.
(f) swapping the $f r$ cubelet with the $f l$ cubelet and the $d r$ cubelet with the $d l$ cubelet.]
5. The process $\left(F^{2} R^{2}\right)^{3}$ swaps two pairs of edge cubelets (it swaps the $u f$ cubelet with the $d f$ cubelet and the $u r$ cubelet with the $d r$ cubelet.) What effect does conjugation of this element have on the cube? Spefically, what are the effects of $Y X Y^{-1}$ where $X=\left(F^{2} R^{2}\right)^{3}$ and Y ranges over F, B, L, R, U, D and the inverses of these six motions?
6. Using the solution to the previous problem, describe an algorithm for interchanging any two pairs of edge cubelets.
