March 11, 2002

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.
"Civilization advances by extending the number of important operations which we can perform without thinking of them." (Alfred North Whitehead)

1 Problems

1. Do one of the following.
(a) Determine the structure of the ring $\mathbf{Z}[x] /\left(x^{2}+3, p\right)$ where
i. $p=3$
ii. $p=5$
(b) Fully describe the ring $\mathbf{Z}[i] /(2+i)$.
2. Fully describe the ring obtained from \mathbf{Z} by adjoining an element α satisfying the two relations $2 \alpha-6=0$ and $\alpha-10=0$.
3. Suppose we adjoin an element α to \mathbf{R} satisfying the relation $\alpha^{2}=1$. Prove the resulting ring is isomorphic to the product ring $\mathbf{R} \times \mathbf{R}$,and find the element of $\mathbf{R} \times \mathbf{R}$ which corresponds to α.
4. Let α denote the residue of x in the ring $R^{\prime}=\mathbf{Z}[x] /\left(x^{4}+x^{3}+x^{2}+x+1\right)$. Compute the expressions for $\left(\alpha^{3}+\alpha^{2}+\alpha\right)(\alpha+1)$ and α^{5} in terms of the basis $\left(1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}\right)$.
5. Do one of the following.
(a) In each case describe the ring obtained from \mathbf{Z} by adjoining an element α satisfying the given relation.
i. $\alpha^{2}+\alpha+1=0$
ii. $\alpha^{2}+1=0$
(b) Let $R=\mathbf{Z} /(10)$. Determine the structure of the ring R^{\prime} obtained from \mathbf{Z} by adjoining element α satisfying each relation.
i. $2 \alpha-6=0$
ii. $2 \alpha-5=0$.
6. Describe the ring obtained from $\mathbf{Z} / 12 \mathbf{Z}$ by adjoining an inverse of 2.In particular, what 'standard' ring is isomorphic to $\mathbf{Z} / 12 \mathbf{Z}$?
