March 11, 2002

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. **Only write on one side of each page.**

"Civilization advances by extending the number of important operations which we can perform without thinking of them." (Alfred North Whitehead)

1 Problems

- 1. Do **one** of the following.
 - (a) Determine the structure of the ring $\mathbf{Z}[x]/(x^2+3,p)$ where

i.
$$p = 3$$

ii.
$$p = 5$$

- (b) Fully describe the ring $\mathbf{Z}[i]/(2+i)$.
- 2. Fully describe the ring obtained from **Z** by adjoining an element α satisfying the two relations $2\alpha 6 = 0$ and $\alpha 10 = 0$.
- 3. Suppose we adjoin an element α to \mathbf{R} satisfying the relation $\alpha^2 = 1$. Prove the resulting ring is isomorphic to the product ring $\mathbf{R} \times \mathbf{R}$, and find the element of $\mathbf{R} \times \mathbf{R}$ which corresponds to α .
- 4. Let α denote the residue of x in the ring $R' = \mathbf{Z}[x] / (x^4 + x^3 + x^2 + x + 1)$. Compute the expressions for $(\alpha^3 + \alpha^2 + \alpha)(\alpha + 1)$ and α^5 in terms of the basis $(1, \alpha, \alpha^2, \alpha^3, \alpha^4)$.
- 5. Do **one** of the following.
 - (a) In each case describe the ring obtained from ${\bf Z}$ by adjoining an element α satisfying the given relation.

i.
$$\alpha^2 + \alpha + 1 = 0$$

ii.
$$\alpha^2 + 1 = 0$$

(b) Let $R = \mathbf{Z}/(10)$. Determine the structure of the ring R' obtained from \mathbf{Z} by adjoining element α satisfying each relation.

i.
$$2\alpha - 6 = 0$$

ii.
$$2\alpha - 5 = 0$$
.

6. Describe the ring obtained from $\mathbf{Z}/12\mathbf{Z}$ by adjoining an inverse of 2.In particular, what 'standard' ring is isomorphic to $\mathbf{Z}/12\mathbf{Z}$?