February 28, 2002

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. **Only write on one side of each page**. *"Anyone who cannot cope with mathematics is not fully human. At best he is a tolerable subhuman who has learned to wear shoes, bathe, and not make messes in the house."* – Robert Heinlein in *Time Enough for Love.*

1 Problems

- 1. In class, we outlined a process (using the substitution principal) that shows, for any ring R, $R[x, y] \approx R[x][y]$. Fill in the details of that process or fill in the details of the following alternative.
 - (a) Extend $R \to R[x][y]$ to a map $\Phi: R[x, y] \to R[x][y]$
 - (b) Extend $R[x] \to R[x, y]$ to a map $\Psi : R[x][y] \to R[x, y]$
 - (c) Use uniqueness of extension to show $\Phi\Psi$ and $\Psi\Phi$ are both the identity maps. (This shows Φ is an isomorphism).
- 2. Do **all** of the following
 - (a) For which integers n does $x^2 + x + 1$ divide $x^4 + 3x^3 + x^2 + 6x + 10$ in $(\mathbb{Z}/n\mathbb{Z})[x]$?
 - (b) Describe the kernel of the map defined by $\phi : \mathbf{Z}[x] \to \mathbf{R}$ given by $\phi(f(x)) = f(1 + \sqrt{2})$.
- 3. Prove
 - (a) the kernel of the homomorphism $\phi : \mathbf{C}[x, y] \to \mathbf{C}[t]$ given by $\phi(f(x, y)) = f(t^2, t^3)$ is the principal ideal generated by the polynomial $y^2 x^3$.
 - (b) describe the image of ϕ explicitly.
- 4. Let I, J be ideals of a ring R.
 - (a) Show by example that $I \cup J$ need not be an ideal but show the set $I+J = \{r \in R : r = x + y, x \in I, y \in J$ is an ideal. This ideal is called the **sum** of I and J.
 - (b) Prove that $I \cap J$ is an ideal.
 - (c) Show by example that the set of products $\{xy : x \in I, y \in J\}$ need not be an ideal but that the set of finite sums $\sum_{i,j} x_i y_j$ of products of elements of I and J is an ideal. This ideal is called the **product** ideal and is denoted IJ.
 - (d) Prove $IJ \subset I \cap J$.
 - (e) Show by example that IJ and $I \cap J$ need not be equal.