February 28, 2002

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.
"Anyone who cannot cope with mathematics is not fully human. At best he is a tolerable subhuman who has learned to wear shoes, bathe, and not make messes in the house." - Robert Heinlein in Time Enough for Love.

1 Problems

1. In class, we outlined a process (using the substitution principal) that shows, for any ring $R, R[x, y] \approx$ $R[x][y]$. Fill in the details of that process or fill in the details of the following alternative.
(a) Extend $R \rightarrow R[x][y]$ to a $\operatorname{map} \Phi: R[x, y] \rightarrow R[x][y]$
(b) Extend $R[x] \rightarrow R[x, y]$ to a map $\Psi: R[x][y] \rightarrow R[x, y]$
(c) Use uniqueness of extension to show $\Phi \Psi$ and $\Psi \Phi$ are both the identity maps. (This shows Φ is an isomorphism).
2. Do all of the following
(a) For which integers n does $x^{2}+x+1$ divide $x^{4}+3 x^{3}+x^{2}+6 x+10$ in $(\mathbf{Z} / n \mathbf{Z})[x]$?
(b) Describe the kernel of the map defined by $\phi: \mathbf{Z}[x] \rightarrow \mathbf{R}$ given by $\phi(f(x))=f(1+\sqrt{2})$.
3. Prove
(a) the kernel of the homomorphism $\phi: \mathbf{C}[x, y] \rightarrow \mathbf{C}[t]$ given by $\phi(f(x, y))=f\left(t^{2}, t^{3}\right)$ is the principal ideal generated by the polynomial $y^{2}-x^{3}$.
(b) describe the image of ϕ explicitly.
4. Let I, J be ideals of a ring R.
(a) Show by example that $I \cup J$ need not be an ideal but show the set $I+J=\{r \in R: r=x+y, x \in I, y \in J$ is an ideal. This ideal is called the sum of I and J.
(b) Prove that $I \cap J$ is an ideal.
(c) Show by example that the set of products $\{x y: x \in I, y \in J\}$ need not be an ideal but that the set of finite sums $\sum_{i, j} x_{i} y_{j}$ of products of elements of I and J is an ideal. This ideal is called the product ideal and is denoted $I J$.
(d) Prove $I J \subset I \cap J$.
(e) Show by example that $I J$ and $I \cap J$ need not be equal.
