Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.
"Reductio ad absurdum, which Euclid loved so much, is one of a mathematician's finest weapons. It is a far finer gambit than any chess play: a chess player may offer the sacrifice of a pawn or even a piece, but a mathematician offers the game." - Godfrey H. Hardy

Type I Problems

1. Determine if the following are tautologies.
(a) $p \Longrightarrow(q \Longrightarrow p)$
(b) $[p \Longrightarrow(q \Longrightarrow r)] \Longrightarrow[q \Longrightarrow(p \Longrightarrow r)]$
(c) $(p \vee q) \Longleftrightarrow(\sim p) \wedge(\sim q)$
(d) $p \wedge \sim p$
(e) $\left((p \wedge \sim q) \Rightarrow\left(r \wedge^{\sim} r\right)\right) \Rightarrow(p \Rightarrow q)$
2. (Number 9 page 30 of Greenberg) Can you think of any way to prove from the postulates in chapter 1 that for every line l
(a) There exists a point lying on l ?
(b) There exists a point not lying on l ?
3. (Number 12 page 31 of Greenberg) What is the flaw in the 'proof' that all triangles are isosceles?

0.1 Type II Problems

1. In each of the below, give examples of sets A, B that satisfy the specified property.
(a) $A \subset B$
(b) $A \nsubseteq B$
(c) $A \in B$
(d) $A \notin B$
(e) $A \subset A$
(f) $A \nsubseteq A$
(g) $A \notin A$
(h) $A \in A$
2. Let S be the collection of all sets that do not contain themselves as elements. Is S in S or is it not in S ?
(a) Look up Russell's paradox and give a brief explanation of how mathematicians now deal with this paradox in set theory.
3. Show that it is impossible for any set to be in one-to-one correspondence with its power set. (Include infinite sets in your presentation.)
4. Do Major exercise 1 page 31 of Greenberg.
5. Do Major exercise 2 page 32 of Greenberg.
