Technology used:

Textbook/Notes used:

\qquad

The beginning of wisdom is the definition of terms. - Socrates

It is a safe rule to apply that, when a mathematical or philosophical author writes with a misty profundity, he is talking nonsense. - A.N. Whitehead

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

I. Do any one of the following

1. Use a truth table to prove that $(\sim q \wedge(p \Longrightarrow q)) \Longrightarrow \sim p$ is always true.
2. Negate the following logical statement

$$
\forall \varepsilon \exists \delta \forall x(|x-a|<\delta \Longrightarrow|f(x)-f(a)|<\varepsilon)
$$

II Do one of the following.

1. Using any result through Chapter 2 of the text and any exercise up to and including Major Exercise 7 part (b), prove the following. In a finite projective plane \mathcal{M} in which every point has exactly $n+1$ distinct lines incident with it, there are exactly $n^{2}+n+1$ distinct lines.
2. What is the smallest number of lines possible in a model of incidence geometry in which there are exactly 5 points? Include a careful argument supporting your claim (but you need not provide a formal proof.)
3. Using any result up to and including Major exercise 7 of Chapter 2 of Greenberg, do part (b) of Major exercise 8. That is, let \mathcal{A} be a finite affine plane (in which, by Major exercise 2 , every line has exactly the same number of distinct points. Call this number n. Suppose, in addition, we know that each point in \mathcal{A} has exactly $n+1$ lines passing through it. Prove the total number of points in A is n^{2}.

III Do any two of the following.

1. Using the Same Side and Opposite Side lemmas and any result up to and including Proposition 3.2 , prove that if $A * B * C$ and $A * C * D$, then the four points A, B, C, and D are distinct and collinear.
2. Using any result up to and including Pasch's Theorem, prove the last part of Proposition 3.5: Given $A * B * C$. Show that B is the only point common to segments $A B$ and $B C$. [You may use the fact that $A C=A B \cup B C$.]
3. Using any result up to and including part (a) of Proposition 3.9, prove the following. If D is a point interior to triangle $\triangle A B C$, then any ray emanating from D must intersect the triangle.

IV Do any two of the following.

1. Using any previous result, prove Proposition 3.11. If $A * B * C, D * E * F, A B \cong D E$, and $A C \cong D F$, then $B C \cong E F$.
2. Using any previous result, prove part (d) of Proposition 3.13. If $A B<C D$, and $C D<E F$, then $A B<E F$.
3. Using any result up to and including part (b) of Proposition 3.8, prove that if D is in the interior of angle $\measuredangle C A B$ and $C * A * E$, then segment $B E$ does not intersect the ray opposite $\overrightarrow{A D}$.
4. Using any previous result, prove Proposition 3.17 (the Angle-Side-Angle criterion for congruence of triangles). Given $\triangle A B C$ and $\triangle D E F$ with $\measuredangle A \cong \measuredangle D, \measuredangle C \cong \measuredangle F$, and $A C \cong D F$, then $\triangle A B C \cong \triangle D E F$
