Errata for Integrated Physics and Calculus

Andrew Rex and Martin Jackson
© 2000 Addison Wesley Longman
Updated August 24, 2000
Note: "Line $-n$ " means the nth line from the bottom of the page.
p. 145 , line $-10 \quad$ wand \rightarrow want 8/24/00
p. 164, Problem 16, $\quad t^{\prime}(u)$ not equal to zero $\rightarrow t^{\prime}(u)>0$

8/24/00 line 3
p. 195, Example 6.1,

All derivatives appear to first-order, so the equation is first-order. \rightarrow All deriva- $\quad 8 / 24 / 00$ first sentence of solution
p. 206, line $-7 \quad$ left side \rightarrow right side

8/24/00
p. 213 , line -15
unity \rightarrow unit
8/24/00
p. 285, line $-9 \quad$ acceleration component $v_{x} \rightarrow$ acceleration component a_{x}

8/24/00
p. 287, Theorem 8.4 Theorem 8.4 should read

8/24/00
Theorem 8.4. Let f be a function that is twice differentiable for all x in $[a, b]$. If K is a positive number such that

$$
-K \leq f^{\prime \prime}(x) \leq K
$$

for all x in $[a, b]$, then

$$
\begin{equation*}
f(a)+\frac{f(b)-f(a)}{b-a}(x-a)-\frac{K(x-a)(b-x)}{2} \leq f(x) \leq f(a)+\frac{f(b)-f(a)}{b-a}(x-a)+\frac{K(x-a)(b-x)}{2} \tag{8.13}
\end{equation*}
$$

for all x in $[a, b]$.
p. 287 , line 8

With K equal to the maximum of $|m|$ and $|M|, \rightarrow$ Rearranging and using absolute
8/24/00 values,
p. 297 , line -7
$\int_{x_{i-1}}^{x_{i}} K_{i}\left(x-x_{i-1}\right)\left(x_{i}-x\right) d x \rightarrow \int_{x_{i-1}}^{x_{i}} \frac{1}{2} K_{i}\left(x-x_{i-1}\right)\left(x_{i}-x\right) d x$
8/24/00
p. 297, line -4
$\int_{x_{i-1}}^{x_{i}} K_{i}\left(x-x_{i-1}\right)\left(x_{i}-x\right) d x \rightarrow \int_{x_{i-1}}^{x_{i}} \frac{1}{2} K_{i}\left(x-x_{i-1}\right)\left(x_{i}-x\right) d x$
8/24/00
p. 323, Figure 9.12(b) $\quad v_{1} \rightarrow u_{1}, v_{2} \rightarrow u_{2}$

8/24/00
p. 324, line 5
$0=m v u_{1} \cos \frac{\pi}{6}-m u_{2} \cos \alpha \rightarrow 0=m u_{1} \sin \frac{\pi}{6}-m u_{2} \sin \alpha$
8/24/00
p. 324 , line 17
$\vec{v}_{0}=\overrightarrow{v u_{1}}+\vec{u}_{2} \rightarrow \vec{v}_{0}=\vec{u}_{1}+\vec{u}_{2}$
8/24/00
p. 379, last paragraph, The paragraph should read as follows: continuing on p. 381
p. 380 , Figure 11.3
p. 383 , line 2 of

Section 11.2.1
p. 392 , line 10
p. 450 , line 1
p. 450 , line -4
p. 456 , line $9-10$
p. 461 , line -8
p. 463 , line 4 evident.

Figures 11.3 (d) and 11.3 (e) should appear as follows.

(d) $\beta=3.1$
$\mathbb{N}=\{0,1,2,3, \ldots\} \rightarrow \mathbb{N}=\{1,2,3, \ldots\}$

The text following the first display should read:

A little experimentation reveals that this model has a wide variety of behavior depending on the choice of the parameter β. Some examples are shown in Figure 11.3 for the values $\beta=2.4,2.8,3.1,3.5$, and 3.9. For $\beta=2.4$ [Figure 11.3(b)], we see successive elements in the sequence increasing to a limiting value of about 0.58 . This behavior is similar to that of the case with $\beta=1.1$, except the values increase to the limit rather than decrease. For $\beta=2.8$ [Figure 11.3(c)], the sequence again tends to a single limit value but in quite a different manner with successive values oscillating between being greater than and less than the apparent limit value of about 0.64 . A different behavior altogether appears with $\beta=3.1$, as seen in Figure 11.3(d). In this case, the sequence does not appear to converge to a single limit value but rather settles down to oscillating between two distinct values at approximately 0.56 and 0.77 . A close look at the $\beta=3.5$ case in Figure 11.3(e) reveals similar oscillatory behavior but now with one cycle including four distinct values. Finally, in the $\beta=3.9$ case [Figure 11.3(f)], no regular pattern is

(e) $\beta=3.5$

8/24/00
Fix the parameters a, b, and c while considering d as varying from 1 to -1 . Think of the corresponding surfaces in animation with d serving as the time (running backward from $d=1$ to $d=-1$). At $d=1$, we see a one-sheet hyperboloid. As d decreases, the neck of the one-sheet hyperboloid contracts in toward the origin. For $d=0$, the neck pinches down to the origin itself and the surface is an elliptic cone. As d continues to decrease (and is now negative), the surface splits into a two-sheet hyperboloid.
a infinite number of values for $\arcsin 0.5 \rightarrow$ infinitely many values of $\arcsin 0.5$
p. 468, line $-8 \quad \lim _{u \rightarrow K} \cos (u)=K \rightarrow \lim _{u \rightarrow K} \cos (u)=\cos (K) \quad$ 8/24/00
$\begin{array}{lll}\text { p. 487, first display } & \text { Should read: } \\ & \tilde{f}(x, y)= \begin{cases}f(x, y) & \text { if }(x, y) \text { is in } R \\ 0 & \text { if }(x, y) \text { is in } \tilde{R} \text { but not in } R .\end{cases} \end{array}$
p. 498, line $-12 \quad$ The third coordinate is z is the same \rightarrow The third coordinate is the same $8 / 24 / 00$
p. 502 , line $6 \quad$ by integrating the the function \rightarrow by integrating the function 8/24/00
p. 583, first display in denominator: $x-a \rightarrow x+a \quad 8 / 24 / 00$
p. 605, line -9
$\partial / \partial x \rightarrow \partial / \partial y$
8/24/00
p. 606, last display $\left.\left.\quad \frac{\partial f}{\partial y}\right|_{1, \pi} \rightarrow \frac{\partial f}{\partial y}\right|_{(1, \pi)} \quad 8 / 24 / 00$
p. 643, first display $\quad f_{x x x}(x, y)=\frac{\partial^{3} f}{\partial x^{3}} \frac{\partial}{\partial x}\left[\frac{\partial^{2} f}{\partial x^{2}}\right] \rightarrow f_{x x x}(x, y)=\frac{\partial^{3} f}{\partial x^{3}}=\frac{\partial}{\partial x}\left[\frac{\partial^{2} f}{\partial x^{2}}\right] \quad$ 8/24/00
p. 742, second display in two places: $\sin \theta_{i} \rightarrow \cos \theta_{i} \quad 8 / 24 / 00$
p. 752 , Problem 8 of \quad radius $4 \rightarrow$ radius $2 \sqrt{2} \quad 8 / 24 / 00$

Section 22.1
p. 847, Line $1 \quad$ continuous partial derivatives \rightarrow continuous second partial derivatives 8/24/00
p. 847, Line $11 \quad$ Theorem $25.2 \rightarrow$ Theorem 22.3 8/24/00
p. 902 , Line $-12 \quad$ for all (x, y) in $\mathbb{R} \rightarrow$ for all (x, y) in $\mathbb{R}^{2} \quad 8 / 24 / 00$
p. 905 , Line $-12 \quad$ throught \rightarrow through 8/24/00
p. AN-5, Volume 2, $\quad 8 \rightarrow-8$

Section 22.2,
Problem 5
p. AN-5, Volume 2, $\quad \frac{1}{2} x^{2}+\frac{1}{2} y^{2}+\sin x \rightarrow x y+\sin x$

8/24/00
Section 22.3,
Problem 5
p. AN-5, Volume 2, $\quad \sqrt{2} v \rightarrow \sqrt{2}|v|$

8/24/00
Section 23.2,
Problem 15

