Errata for Integrated Physics and Calculus Andrew Rex and Martin Jackson ©2000 Addison Wesley Longman Updated August 24, 2000

Note: "Line -n" means the *n*th line from the bottom of the page.

p. 145, line -10	wand \rightarrow want	8/24/00
p. 164, Problem 16, line 3	$t'(u)$ not equal to zero $\rightarrow t'(u) > 0$	8/24/00
p. 195, Example 6.1, first sentence of solution	All derivatives appear to first-order, so the equation is first-order. \rightarrow All derivatives appear to the first power, so the equation is linear.	8/24/00
p. 206, line -7	left side \rightarrow right side	8/24/00
p. 213, line -15	unity \rightarrow unit	8/24/00
p. 285, line -9	acceleration component $v_x \rightarrow$ acceleration component a_x	8/24/00
p. 287, Theorem 8.4	Theorem 8.4 should read	8/24/00
	Theorem 8.4. Let f be a function that is twice differentiable for all x in $[a, b]$. If	

K is a positive number such that

$$-K \le f''(x) \le K$$

for all x in [a, b], then

$$f(a) + \frac{f(b) - f(a)}{b - a}(x - a) - \frac{K(x - a)(b - x)}{2} \le f(x) \le f(a) + \frac{f(b) - f(a)}{b - a}(x - a) + \frac{K(x - a)(b - x)}{2}$$
(8.13)

for all x in [a, b].

p. 287, line 8	With K equal to the maximum of $ m $ and $ M , \rightarrow$ Rearranging and using absolute values,	8/24/00
p. 297, line – 7	$\int_{x_{i-1}}^{x_i} K_i(x-x_{i-1})(x_i-x) dx \to \int_{x_{i-1}}^{x_i} \frac{1}{2} K_i(x-x_{i-1})(x_i-x) dx$	8/24/00
p. 297, line –4	$\int_{x_{i-1}}^{x_i} K_i(x - x_{i-1})(x_i - x) dx \to \int_{x_{i-1}}^{x_i} \frac{1}{2} K_i(x - x_{i-1})(x_i - x) dx$	8/24/00
p. 323, Figure 9.12(b)	$v_1 ightarrow u_1, v_2 ightarrow u_2$	8/24/00
p. 324, line 5	$0 = mvu_1 \cos\frac{\pi}{6} - mu_2 \cos\alpha \to 0 = mu_1 \sin\frac{\pi}{6} - mu_2 \sin\alpha$	8/24/00
p. 324, line 17	$ec{v_0}=vec{u}_1+ec{u}_2 ightarrowec{v}_0=ec{u}_1+ec{u}_2$	8/24/00

p. 379, last paragraph, The paragraph should read as follows:

continuing on p. 381

A little experimentation reveals that this model has a wide variety of behavior depending on the choice of the parameter β . Some examples are shown in Figure 11.3 for the values $\beta = 2.4, 2.8, 3.1, 3.5$, and 3.9. For $\beta = 2.4$ [Figure 11.3(b)], we see successive elements in the sequence increasing to a limiting value of about 0.58. This behavior is similar to that of the case with $\beta = 1.1$, except the values increase to the limit rather than decrease. For $\beta = 2.8$ [Figure 11.3(c)], the sequence again tends to a single limit value but in quite a different manner with successive values oscillating between being greater than and less than the apparent limit value of about 0.64. A different behavior altogether appears with $\beta = 3.1$, as seen in Figure 11.3(d). In this case, the sequence does not appear to converge to a single limit value but rather settles down to oscillating between two distinct values at approximately 0.56 and 0.77. A close look at the $\beta = 3.5$ case in Figure 11.3(e) reveals similar oscillatory behavior but now with one cycle including four distinct values. Finally, in the $\beta = 3.9$ case [Figure 11.3(f)], no regular pattern is evident.

8/24/00

p. 468, line -8	$\lim_{u \to K} \cos(u) = K \to \lim_{u \to K} \cos(u) = \cos(K)$	8/24/00
p. 487, first display	Should read: $\tilde{f}(x,y) = \begin{cases} f(x,y) & \text{ if } (x,y) \text{ is in } R \\ 0 & \text{ if } (x,y) \text{ is in } \tilde{R} \text{ but not in } R. \end{cases}$	8/24/00
p. 498, line -12	The third coordinate is z is the same \rightarrow The third coordinate is the same	8/24/00
p. 502, line 6	by integrating the function \rightarrow by integrating the function	8/24/00
p. 583, first display	in denominator: $x - a \rightarrow x + a$	8/24/00
p. 605, line -9	$\partial/\partial x o \partial/\partial y$	8/24/00
p. 606, last display	$\left. \frac{\partial f}{\partial y} \right _{1,\pi} \to \left. \frac{\partial f}{\partial y} \right _{(1,\pi)}$	8/24/00
p. 643, first display	$f_{xxx}(x,y) = \frac{\partial^3 f}{\partial x^3} \frac{\partial}{\partial x} \left[\frac{\partial^2 f}{\partial x^2} \right] \to f_{xxx}(x,y) = \frac{\partial^3 f}{\partial x^3} = \frac{\partial}{\partial x} \left[\frac{\partial^2 f}{\partial x^2} \right]$	8/24/00
p. 742, second display	in two places: $\sin \theta_i \rightarrow \cos \theta_i$	8/24/00
p. 752, Problem 8 of Section 22.1	radius $4 \rightarrow \text{radius } 2\sqrt{2}$	8/24/00
p. 847, Line 1	continuous partial derivatives \rightarrow continuous second partial derivatives	8/24/00
p. 847, Line 11	Theorem $25.2 \rightarrow$ Theorem 22.3	8/24/00
p. 902, Line -12	for all (x, y) in $\mathbb{R} \to$ for all (x, y) in \mathbb{R}^2	8/24/00
p. 905, Line -12	through $t \rightarrow through$	8/24/00
p. AN-5, Volume 2, Section 22.2, Problem 5	$8 \rightarrow -8$	8/24/00
p. AN-5, Volume 2, Section 22.3, Problem 5	$\frac{1}{2}x^2 + \frac{1}{2}y^2 + \sin x \to xy + \sin x$	8/24/00
p. AN-5, Volume 2, Section 23.2, Problem 15	$\sqrt{2}v ightarrow \sqrt{2} v $	8/24/00