SPRING SEMESTER 1996
 EXAMINATION ONE
 HONORS 213

Thompson 127, 12:00 P.M.
Bryan Smith

The beginning of wisdom is the definition of terms. -Socrates
When taking the examination, be sure to give as complete answers as you can. You need not provide as much detail as that necessary in a homework assignment but your solutions should be complete and easy to follow.

I 5 points

Give an example of a conditional statement, its converse and its contrapositive.
II 5,5 points 1 . Which parallel property does this logical statement encode?

$$
\forall l \quad \forall \mathbf{P} \quad \forall m \quad\left(\sim\left(\mathbf{P}_{\mathrm{I}} l\right) \wedge\left(\mathbf{P}_{\mathrm{I}} m\right) \wedge(m \neq l)\right) \Longrightarrow\left(\exists \mathbf{Q} \ni\left(\mathbf{Q}_{\mathrm{I}} l\right) \wedge\left(\mathbf{Q}_{\mathrm{I}} m\right)\right)
$$

2. What is the negation of the above logical statement.

III 15 points

Using any result up to and including Proposition 2.4, prove the following.
For every point \mathbf{P} there exist at least two lines through \mathbf{P}.

IV 20 points

Using any previous result, prove the following portion of Pasch's Theorem.
If $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are distinct noncollinear points and l is any line intersecting $\mathbf{A B}$ in a point between \mathbf{A} and \mathbf{B}, then l also intersects either $\mathbf{A C}$ or $\mathbf{B C}$.

V 20 points

Let \mathcal{M} be a finite projective plane. Prove that all lines in \mathcal{M} have the same number of points lying on them.

VI 20 points

Using any result up to and including Proposition 3.2, prove the following part of Proposition 3.3.

If $\mathbf{A} * \mathbf{B} * \mathbf{C}$ and $\mathbf{A} * \mathbf{C} * \mathbf{D}$, then $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ are distinct, collinear points.

VII 10 points

Use the Forward-Backward method to analyze the following problem (the converse of the Same Side Lemma)
Given that $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are collinear points, l is a line other than $\overleftrightarrow{\mathbf{A C}}$ passing through \mathbf{C} and points \mathbf{A} and \mathbf{B} are on the same side of l. Then $\mathbf{A} * \mathbf{B} * \mathbf{C}$.

