Cylindrical and Spherical Coordinates

Extra Homework Exercises

1. Convert each equation to cylindrical coordinates and sketch its graph in \mathbf{R}^3 .

(a)
$$z = x^2 + y^2$$

(b) $z = x^2 - y^2$
(c) $\frac{x^2}{4} - \frac{y^2}{9} + z^2 = 0$

- 2. Convert each equation to spherical coordinates and sketch its graph in \mathbb{R}^3 .
 - (a) $z^2 = x^2 + y^2$ (b) $4z = x^2 + 3y^2$ (c) $x^2 + y^2 - 4z^2 = 1$
- 3. Convert each equation to rectangular coordinates and sketch its graph in \mathbb{R}^3 .
 - (a) $z = r^2 \sin(2\theta)$
 - (b) $r = \sin(\theta)$
 - (c) $\rho^2 \sin^2(\phi) = 1$
 - (d) $\rho^2 \sin(\phi) \cos(\phi) \cos(\theta) = 1$
- 4. A solid lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = z$.
 - (a) Write a description of the solid in terms of inequalities involving cylindrical coordinates.
 - (b) Write a description of the solid in terms of inequalities involving spherical coordinates.
- 5. The point (x, y, z) lies on an ellipsoid if (in the following R, a, b, c are all constants)

$$x = aR\sin(\phi)\cos(\theta)$$

$$y = bR\sin(\phi)\sin(\theta)$$

$$z = cR\cos(\phi)$$

Find an equation for this ellipsoid in rectangular coordinates.

6. What is the area in xy – space corresponding to the area of the region in $r\theta$ – space given by

$$\{(r,\theta): r_0 \le r \le r_0 + \Delta r, \theta_0 \le \theta \le \theta_0 + \Delta \theta?$$