Cylindrical and Spherical Coordinates

Extra Homework Exercises

1. Convert each equation to cylindrical coordinates and sketch its graph in \mathbf{R}^{3}.
(a) $z=x^{2}+y^{2}$
(b) $z=x^{2}-y^{2}$
(c) $\frac{x^{2}}{4}-\frac{y^{2}}{9}+z^{2}=0$
2. Convert each equation to spherical coordinates and sketch its graph in \mathbf{R}^{3}.
(a) $z^{2}=x^{2}+y^{2}$
(b) $4 z=x^{2}+3 y^{2}$
(c) $x^{2}+y^{2}-4 z^{2}=1$
3. Convert each equation to rectangular coordinates and sketch its graph in \mathbf{R}^{3}.
(a) $z=r^{2} \sin (2 \theta)$
(b) $r=\sin (\theta)$
(c) $\rho^{2} \sin ^{2}(\phi)=1$
(d) $\rho^{2} \sin (\phi) \cos (\phi) \cos (\theta)=1$
4. A solid lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=z$.
(a) Write a description of the solid in terms of inequalities involving cylindrical coordinates.
(b) Write a description of the solid in terms of inequalities involving spherical coordinates.
5. The point (x, y, z) lies on an ellipsoid if (in the following R, a, b, c are all constants)

$$
\begin{aligned}
x & =a R \sin (\phi) \cos (\theta) \\
y & =b R \sin (\phi) \sin (\theta) \\
z & =c R \cos (\phi)
\end{aligned}
$$

Find an equation for this ellipsoid in rectangular coordinates.
6. What is the area in $x y$-space corresponding to the area of the region in $r \theta$ - space given by

$$
\left\{(r, \theta): r_{0} \leq r \leq r_{0}+\Delta r, \theta_{0} \leq \theta \leq \theta_{0}+\Delta \theta ?\right.
$$

