Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.
"Do not imagine that Mathematics is hard and crabbed, and repulsive to common sense. It is merely the etherealization of common sense." - Lord Kelvin

Problems

1. Prove directly that the bilinear form represented by the matrix $\left[\begin{array}{ll}a & b \\ b & d\end{array}\right]$ is positive definite if and only if $a>0$ and $a d-b^{2}>0$.
2. Let \langle,$\rangle be a symmetric bilinear form on a vector space V$ over a field F. The function $q: V \rightarrow F$ defined by $q(v)=\langle v, v\rangle$ is called the quadratic form associated with the bilinear form. Show how to recover the bilinear form from q, if the field is R or C, by expanding $q(v+w)$.
3. The vector space P_{n} of all polynomials of degree less than or equal to n has a bilinear form defined by

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

Find an orthonormal basis for
(a) P_{1}
(b) P_{2}
(c) P_{3}
(d) Compute the projection (using this bilinear form) of $h(x)=e^{x}$ onto P_{3} and compare the accuracy of that approximation to h with the 3^{\prime} rd and 6 ' th degree Taylor approximations to h (centered at 0). Use careful graphs to justify your comparison. (Or if you prefer a more analytic error analysis, compute $\int_{-1}^{1}|h(x)-q(x)| d x$ where q is your approximation.
4. Let $V=R^{2 \times 2}$ be the vector space of all real 2×2 matrices.
(a) Determine the matrix of the bilinear form $\langle A, B\rangle=\operatorname{trace}(A B)$ on V with respect to the standard basis $\left\{e_{i j}\right\}$.
(b) Determine the signature of this form.
(c) Find an orthogonal basis for this form.
(d) Determine the signature of this form on the subspace of V of matrices with trace 0 .

