February 6, 2001

Exercises

1. Let $\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$. Find an orthonormal basis for R^{2} with respect to the form $\langle X, Y\rangle=X^{t} A Y$.
2. Prove any positive definite form is nondegenerate.
3. Find an othogonal basis for the form on R^{3} whose matrix (with respect to the standard basis) is $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1\end{array}\right]$.
4. Let A be the matrix of a symmetric bilinear form \langle,$\rangle with respect to some basis. Prove or disprove:$ The eigenvalues of A are independent of the basis. That is, if A^{\prime} is the matrix of the form with respect to another basis, then A and A^{\prime} have the same eigenvalues.
5. Let W be a subspace of a vector space V on which a symmetric bilinear form is given.
(a) Prove that W^{\perp} is a subspace of V.
(b) Prove that the null space N is a subspace of V.
6. Let W_{1}, W_{2} be subspaces of a vector space V with a symmetric bilinear form. Prove:
(a) $\left(W_{1}+W_{2}\right)^{\perp}=W_{1}^{\perp} \cap W_{2}^{\perp}$
(b) $W \subset\left(W^{\perp}\right)^{\perp}$
(c) If $W_{1} \subset W_{2}$ then $W_{2}^{\perp} \subset W_{1}^{\perp}$.

0.1 Examples in class:

1. Let V denote the vector space of all real $n \times n$ matrices. Prove that $\langle A, B\rangle=\operatorname{Trace}\left(A^{t} B\right)$ is a positive definite, symmetric bilinear form on V. Find an orthonormal basis for this form.
(a) $\langle A, B\rangle=$ Trace $\left(A^{t} B\right)=\operatorname{Trace}\left(\left(A^{t} B\right)^{t}\right)=\operatorname{Trace}\left(B^{t} A\right)=\langle B, A\rangle$
(b) $\langle A, A\rangle=\operatorname{Trace}\left(A^{t} A\right)=\left\|v_{1}\right\|^{2}+\cdots+\left\|v_{n}\right\|^{2}$ where v_{i} denotes the i th column of A.
(c) $\left\langle e_{i j}, e_{r s}\right\rangle=\operatorname{Trace}\left(e_{j i} e_{r s}\right)=\left\{\begin{array}{cc}1, \quad i=r \text { and } j=s \\ 0, & \text { otherwise }\end{array}\right.$ Thus, the standard basis is orthonormal with respect to \langle,$\rangle .$
2. Let V be the vector space of all real 2×2 matrices.
(a) Show the form $\langle A, B\rangle=\operatorname{det}(A+B)-\operatorname{det}(A)-\operatorname{det}(B)$ is symmetric and bilinear.

$$
\text { i. }\langle A, B\rangle=\operatorname{det}(A+B)-\operatorname{det}(A)-\operatorname{det}(B)=\operatorname{det}(B+A)-\operatorname{det}(B)-\operatorname{det}(A)=\langle B, A\rangle
$$

ii. $\langle A+B, C\rangle=\operatorname{det}(A+B+C)-\operatorname{det}(A+B)-\operatorname{det}(C) ;\langle A, C\rangle+\langle B, C\rangle=\operatorname{det}(A+C)-$ $\operatorname{det}(A)-\operatorname{det}(C)+\operatorname{det}(B+C)-\operatorname{det}(B)-\operatorname{det}(C)$ and push the 2×2 size.
(b) Compute the matrix of this form with respect to the standard basis and determine the signature of the form.
i. $\left\langle e_{i j} e_{r s}\right\rangle=\operatorname{det}\left(e_{i j}+e_{r s}\right)-\operatorname{det}\left(e_{i j}\right)-\operatorname{det}\left(e_{r s}\right)=\left\{\begin{array}{c}1, \quad i=j=1 \text { and } r=s=2 \\ -1, \quad i j=12 \text { and } r s=21 \\ 0, \text { otherwise }\end{array}\right.$
ii. $A=\left[\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$ Permute to $A^{\prime}=\left[\begin{array}{cc}I_{2} & \\ & -I_{2}\end{array}\right]$.
iii. Signature is $2+2=4$.
(c) Do the same for the subspace of matrices with trace zero.
i. Basis $\left\{e_{11}, e_{12}, e_{21}\right\} e_{22}=-e_{11}$.

