Mathematics 434-A

February 6, 2001

Exercises

- 1. Let $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. Find an orthonormal basis for R^2 with respect to the form $\langle X, Y \rangle = X^t A Y$.
- 2. Prove any positive definite form is nondegenerate.
- 3. Find an othogonal basis for the form on \mathbb{R}^3 whose matrix (with respect to the standard basis) is

 $\left|\begin{array}{cccc} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{array}\right|.$

- 4. Let A be the matrix of a symmetric bilinear form \langle , \rangle with respect to some basis. Prove or disprove: The eigenvalues of A are independent of the basis. That is, if A' is the matrix of the form with respect to another basis, then A and A' have the same eigenvalues.
- 5. Let W be a subspace of a vector space V on which a symmetric bilinear form is given.
 - (a) Prove that W^{\perp} is a subspace of V.
 - (b) Prove that the null space N is a subspace of V.
- 6. Let W_1, W_2 be subspaces of a vector space V with a symmetric bilinear form. Prove:
 - (a) $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$
 - (b) $W \subset \left(W^{\perp}\right)^{\perp}$
 - (c) If $W_1 \subset W_2$ then $W_2^{\perp} \subset W_1^{\perp}$.

0.1 Examples in class:

- 1. Let V denote the vector space of all real $n \times n$ matrices. Prove that $\langle A, B \rangle = Trace(A^tB)$ is a positive definite, symmetric bilinear form on V. Find an orthonormal basis for this form.
 - (a) $\langle A, B \rangle = Trace(A^{t}B) = Trace((A^{t}B)^{t}) = Trace(B^{t}A) = \langle B, A \rangle$
 - (b) $\langle A, A \rangle = Trace(A^tA) = ||v_1||^2 + \dots + ||v_n||^2$ where v_i denotes the *i*th column of A.
 - (c) $\langle e_{ij}, e_{rs} \rangle = Trace(e_{ji}e_{rs}) = \begin{cases} 1, & i = r \text{ and } j = s \\ 0, & \text{otherwise} \end{cases}$ Thus, the standard basis is orthonormal with respect to \langle , \rangle .
- 2. Let V be the vector space of all real 2×2 matrices.
 - (a) Show the form ⟨A, B⟩ = det (A + B) det (A) det (B) is symmetric and bilinear.
 i. ⟨A, B⟩ = det (A + B) det (A) det (B) = det (B + A) det (B) det (A) = ⟨B, A⟩

- ii. $\langle A + B, C \rangle = \det(A + B + C) \det(A + B) \det(C)$; $\langle A, C \rangle + \langle B, C \rangle = \det(A + C) \det(A) \det(C) + \det(B + C) \det(B) \det(C)$ and push the 2 × 2 size.
- (b) Compute the matrix of this form with respect to the standard basis and determine the signature of the form.

i.
$$\langle e_{ij}e_{rs}\rangle = \det(e_{ij} + e_{rs}) - \det(e_{ij}) - \det(e_{rs}) = \begin{cases} 1, & i = j = 1 \text{ and } r = s = 2 \\ -1, & ij = 12 \text{ and } rs = 21 \\ 0, & \text{otherwise} \end{cases}$$

ii. $A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ Permute to $A' = \begin{bmatrix} I_2 \\ & -I_2 \end{bmatrix}$.
iii. Signature is $2 + 2 = 4$.

(c) Do the same for the subspace of matrices with trace zero.

i. Basis
$$\{e_{11}, e_{12}, e_{21}\} e_{22} = -e_{11}$$