1.1

Exam 1
March 26, 2001

Textbook/Notes used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Only write on one side of each page.

Do any five (5) of the following.

1. Analyze the ring obtained from the integers \mathbf{Z} by adjoining an element α which satisfies both of the relations $\alpha^{3}+\alpha^{2}+1=0$ and $\alpha^{2}+\alpha=0$.In particular, what is the form of an arbitrary element in the ring $\mathbf{Z}[\alpha]$? [Hint: linear combination consequences of the relations give a lot of compression.]
2. Let $\phi: \mathbf{Z}[x] \rightarrow \mathbf{R}$ be the ring homomorphism given by $\phi(f(x))=f(1+\sqrt{2})$. Show that $\operatorname{ker}(\phi)=$ $\left(x^{2}-2 x-1\right)$ the ideal generated by $x^{2}-2 x-1$.
3. Let R be a ring and a_{1}, a_{2}, a_{3} elements of R. The ideal $I=\left(a_{1}, a_{2}, a_{3}\right)$ generated by a_{1}, a_{2}, a_{3} is defined to be the smallest ideal of R containing a_{1}, a_{2}, a_{3}. Prove that I is just the set of all linear combinations $J=\left\{r_{1} a_{1}+r_{2} a_{2}+r_{3} a_{3}: r_{1}, r_{2}, r_{3} \in R\right\}$. You may use the fact that J is an ideal of R without proving it.
4. Find the signature of the quadratic form associated with the conic $x^{2}+2 x y+y^{2}=1$.

Hint: The eigenvalues of $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ are 2,0 with respective eigenvectors $\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
5. Let V be a Euclidean Space. If $v, w \in V$ have the property that $|v|=|w|$, show $(v+w) \perp(v-w)$.
6. Let W, W_{1}, W_{2} be subspaces of a vector space V with a symmetric bilinear form. Prove if $W_{1} \subset W_{2}$ then $W_{2}^{\perp} \subset W_{1}^{\perp}$.
7. Extend the vector $X_{1}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ to an orthonormal basis for R^{3} (with the usual dot product).
8. Use the Sylow theorems to show no group of order $98=2 \cdot 7^{2}$ can be simple.

