February 5, 2001

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. **Only write on one side of each page.** "Mathematics seems to endow one with something like a new sense." – Charles Darwin

1 Problems

1.1 Geometry Associated with Real Positive Definite Form

- 1. Let W be a subspace of a Euclidean space V. Prove $W = W^{\perp \perp}$.
- 2. Find the matrix of the projection $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that the image of the standard basis of \mathbb{R}^3 forms an equilateral triangle and $T(e_1)$ points in the direction of the x axis.
- 3. Let $w \in \mathbb{R}^n$ be a vector of unit length.
 - (a) Prove the matrix $P = I 2ww^t$ is orthogonal.
 - (b) Prove multiplication by P is a reflection throught the space W^{\perp} orthogonal to w. That is, prove if we write an arbitrary vector v = cw + w' where $w' \in W^{\perp}$, then Pv = -cw + w'.
 - (c) Let X, Y be arbitrary vectors in \mathbb{R}^n with the same length. Determine a vector w such that PX = Y. [Hint: draw generic X + Y and X Y].
- 4. Use the above problem (number 3) to prove every orthogonal $n \times n$ matrix is a product of at most n reflections.

1.2 Hermitian Forms

- 1. Prove a matrix A is hermitian if and only if the associated form X^*AX is a hermitian form.
- 2. Is $\langle X, Y \rangle = x_1y_1 + ix_1y_2 ix_2y_1 + ix_2y_2$ on C^2 a hermitian form?
- 3. Prove the determinant of a hermitian matrix is a real number.
- 4. Let P_n be the vector space of polynomials of degree less than or equal to n.
 - (a) Show

$$\langle f,g \rangle = \int_{0}^{2\theta} \overline{f\left(e^{i\theta}\right)}g\left(e^{i\theta}\right) \, d\theta$$

is a positive definite hermitian form on P_n .

- (b) Find an orthonormal basis for this form when n = 3.
- 5. Determine whether or not the following rules define hermitian forms on the space $C^{n \times n}$ of complex matrices and, if so, determine their signature.
 - (a) $\langle A, B \rangle = Trace(A^*B)$.

(b)
$$\langle A, B \rangle = Trace\left(\overline{A}B\right)$$
.

1.3 Spectral Theorem

1.

(a) Find a unitary matrix P so that PAP^* is diagonal when

$$A = \left[\begin{array}{cc} 1 & i \\ -i & 1 \end{array} \right].$$

(b) Find a real orthogonal matrix P so that PAP^t is diagonal when

$$A = \left[\begin{array}{rrrr} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right].$$

2. Prove a real symmetric matrix is positive definite if and only if all of its eigenvalues are positive.

1.4 Conics and Quadrics

1. Determine the type of the quadric

$$x^{2} + 4xy + 2xz + z^{2} + 3x + z - 6 = 0.$$

2.

- (a) Describe the types of conic in terms of the signature of the quadratic form.
- (b) Do the same for quadrics in \mathbb{R}^3 .