February 5, 2001

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.
"Mathematics seems to endow one with something like a new sense." - Charles Darwin

1 Problems

1.1 Geometry Associated with Real Positive Definite Form

1. Let W be a subspace of a Euclidean space V. Prove $W=W^{\perp \perp}$.
2. Find the matrix of the projection $T: R^{3} \rightarrow R^{2}$ such that the image of the standard basis of R^{3} forms an equilateral triangle and $T\left(e_{1}\right)$ points in the direction of the x-axis.
3. Let $w \in R^{n}$ be a vector of unit length.
(a) Prove the matrix $P=I-2 w w^{t}$ is orthogonal.
(b) Prove multiplication by P is a reflection throught the space W^{\perp} orthogonal to w. That is, prove if we write an arbitrary vector $v=c w+w^{\prime}$ where $w^{\prime} \in W^{\perp}$, then $P v=-c w+w^{\prime}$.
(c) Let X, Y be arbitrary vectors in R^{n} with the same length. Determine a vector w such that $P X=Y$. [Hint: draw generic $X+Y$ and $X-Y$].
4. Use the above problem (number 3) to prove every orthogonal $n \times n$ matrix is a product of at most n reflections.

1.2 Hermitian Forms

1. Prove a matrix A is hermitian if and only if the associated form $X^{*} A X$ is a hermitian form.
2. Is $\langle X, Y\rangle=x_{1} y_{1}+i x_{1} y_{2}-i x_{2} y_{1}+i x_{2} y_{2}$ on C^{2} a hermitian form?
3. Prove the determinant of a hermitian matrix is a real number.
4. Let P_{n} be the vector space of polynomials of degree less than or equal to n.
(a) Show

$$
\langle f, g\rangle=\int_{0}^{2 \theta} \overline{f\left(e^{i \theta}\right)} g\left(e^{i \theta}\right) d \theta
$$

is a positive definite hermitian form on P_{n}.
(b) Find an orthonormal basis for this form when $n=3$.
5. Determine whether or not the following rules define hermitian forms on the space $C^{n \times n}$ of complex matrices and, if so, determine their signature.
(a) $\langle A, B\rangle=\operatorname{Trace}\left(A^{*} B\right)$.
(b) $\langle A, B\rangle=\operatorname{Trace}(\bar{A} B)$.

1.3 Spectral Theorem

1.

(a) Find a unitary matrix P so that $P A P^{*}$ is diagonal when

$$
A=\left[\begin{array}{cc}
1 & i \\
-i & 1
\end{array}\right]
$$

(b) Find a real orthogonal matrix P so that $P A P^{t}$ is diagonal when

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] .
$$

2. Prove a real symmetric matrix is positive definite if and only if all of its eigenvalues are positive.

1.4 Conics and Quadrics

1. Determine the type of the quadric

$$
x^{2}+4 x y+2 x z+z^{2}+3 x+z-6=0 .
$$

2.

(a) Describe the types of conic in terms of the signature of the quadratic form.
(b) Do the same for quadrics in R^{3}.

