March 9, 2001

Namo	

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. **Only write on one side of each page.** "General and abstract ideas are the source of the greatest errors of mankind." – Rousseau, 1762

1 Problems

- 1. Do all of the following
 - (a) For which integers n does $x^2 + x + 1$ divide $x^4 + 3x^3 + x^2 + 6x + 10$ in $(\mathbf{Z}/n\mathbf{Z})[x]$?
 - (b) Describe the kernel of the map defined by $\phi : \mathbf{Z}[x] \to \mathbf{R}$ given by $\phi(f(x)) = f(1 + \sqrt{2})$.
 - (c) Prove
 - i. the kernel of the homomorphism $\phi: \mathbf{C}[x,y] \to \mathbf{C}[t]$ given by $\phi(f(x,y)) = f(t^2,t^3)$ is the principal ideal generated by the polynomial $y^2 x^3$.
 - ii. describe the image of ϕ explicitly.
- 2. Let I, J be ideals of a ring R.
 - (a) Show by example that $I \cup J$ need not be an ideal but show the set $I+J = \{r \in R : r = x+y, x \in I, y \in J \text{ is an ideal. This ideal is called the sum of } I \text{ and } J.$
 - (b) Prove that $I \cap J$ is an ideal.
 - (c) Show by example that the set of products $\{xy : x \in I, y \in J\}$ need not be an ideal but that the set of finite sums $\sum_{i,j} x_i y_j$ of products of elements of I and J is an ideal. This ideal is called the **product** ideal.
 - (d) Prove $IJ \subset I \cap J$.
 - (e) Show by example that IJ and $I \cap J$ need not be equal.