February 5, 2001

	Na	mo	

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. **Only write on one side of each page.**"Experience is what enables you to recognize a mistake when you make it again." (Earl Wilson)

1 Problems

- 1. Do **both** of the following.
 - (a) Prove all of the parts of Theorem 12.1 in Gallian.
 - (b) Given a ring R, the set of formal power series $p(t) = a_0 + a_1t + a_2t^2 + \cdots +$ ('formal' means there is no requirement of convergence) is a ring. (Denoted R[[t]].) Show that R[[t]] is a ring and prove that a formal power series p(t) is invertible if and only if a_0 is a unit of R.
- 2. Let Q denote the rational numbers (you may use the fact that Q is a field), $Q[\alpha]$ the smallest subring of C (the complex numbers) containing α , and $Q[\alpha, \beta]$ the smallest subring of C containing both α and β . Let $\alpha = \sqrt{2}$, $\beta = \sqrt{3}$ and $\gamma = \alpha + \beta$. Prove that $Q[\alpha, \beta] = Q[\gamma]$.
- 3. Prove the distributive law and the cancellation law of addition for the natural numbers. You may assume commutativity and associativity have already been proven.