Spring 2002

March 28, 2002

Exam 1

Name

Textbook/Notes used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. **Only write on one side of each page.**

Do any five (5) of the following.

- 1. Let $\phi : \mathbf{Z}[x] \to \mathbf{R}$ be the ring homomorphism given by $\phi(f(x)) = f(1 + \sqrt{2})$. Show that ker $(\phi) = (x^2 2x 1)$ the ideal generated by $x^2 2x 1$.
- 2. There are $70 = \binom{8}{4}$ ways to color the edges of an octogon, in which exactly four of the edges are black and the other four are white. The group D_8 operates on this set of 70 colorings and the orbits represent equivalent colorings. Use Burnside's Theorem to count the number of equivalence classes of colorings.
- 3. Do **both** of the following.
 - (a) The set {1,9,16,22,29,53,74,79,81} is an abelian group under multiplication modulo 91. Determine the isomorphism class of this group.
 - (b) Determine the number of isomorphism classes of abelian groups of order 400.
- 4. Do either of the following.
 - (a) The relation < on the natural numbers **N** can be defined by the rule a < b if there is an $n \in \mathbf{N}$ where a + n = b. Assume the elementary properties of addition have all been proved and use the Peano Axioms to prove if a < b then a + n < b + n for all $n \in \mathbf{N}$.
 - (b) Use the Peano Axioms to prove that the relation < is transitive.
- 5. Do either of the following.
 - (a) Describe the ring obtained from F_2 (the field \mathbf{Z}_2) by adjoining an element α satisfying $\alpha^2 + \alpha + 1 = 0$.
 - (b) Describe the ring obtained from $\mathbf{Z}/12\mathbf{Z}$ by adjoining an inverse of 2.
- 6. Do either of the following [Recall that if F is a field then F[x] is a principal Ideal Domain.]
 - (a) Prove the ring $F_5[x]/(x^2+x+1)$ is a field. (Here F_5 is the field \mathbf{Z}_5 .)
 - (b) Prove the ring $F_3[x] / (x^3 + x + 1)$ is not a field (Here F_3 is the field \mathbf{Z}_3 .)
- 7. Let a, b be elements in a field F with $a \neq 0$. Prove that a polynomial $f(x) \in F[x]$ is irreducible if and only if f(ax + b) is irreducible.