August 22, 2001

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. **Only write on one side of each page.**

"Simple solutions seldom are. It takes a very unusual mind to undertake analysis of the obvious." — Alfred North Whitehead

Problems

When doing problems associated with matrices, you are not restricted to the material covered, so far, in our review.

- 1. You must do this problem. Do **two** of the following.
 - (a) (Vandermonde Determinant)
 - i. Prove that $\det \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix} = (b-a)(c-a)(c-b)$.
 - ii. (*) Prove an analogous formula for $n \times n$ matrices by using induction and row operations (in a clever fashion) to clear out the first column.
 - (b) Find a formula for $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^n$, and prove it by induction.

 - (d) Use Mathematical Induction to prove that if A_1, \dots, A_n are square, invertible, $m \times m$ matrices then the product $A_1 \cdots A_m$ is also invertible and

$$(A_1 \cdots A_m)^{-1} = A_m^{-1} \cdots A_1^{-1}.$$

- 2. Do one of the following.
 - (a) Prove that the Second Principle of Mathematical Induction implies the First Principle of Mathematical Induction.
 - (b) (*) Let A, B be $m \times n$ and $n \times m$ matrices. Prove $I_m AB$ is invertible if and only if $I_n BA$ is invertible.
- 3. Do **both** of the following.
 - (a) Let a, b be elements of a group G. Show that the equation ax = b has a unique solution in G.
 - (b) Let G be a group, with multiplicative notation. Define an **opposite group** G^0 with law of composition $a \circ b$ as follows: The underlying set is the same as for G, but the law of composition is the opposite; that is, define $a \circ b = ba$. Prove that this defines a group.

	2	

4. Show that for any set (including infinite sets) A it is not the case that A is in one-one correspondence

with the power set of A, P(A).