October 2, 2000

Fall 2001

Exam 1

Name

Technology used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. **Only write on one side of each page.**

The Problems

- 1. (20 points) Use mathematical induction to solve **one** of the following.
 - (a) Let $\phi : G \to G'$ be a group homomorphism. Prove that for any elements a_1, \dots, a_k of G, $\phi(a_1 \dots a_k) = \phi(a_1) \dots \phi(a_k)$.
 - (b) Compute the determinant of the $n \times n$ matrix A_n given by $A_n = \begin{bmatrix} 1 \\ & \ddots \\ & 1 \end{bmatrix}$
- 2. (20 points) Given a group G, subgroup H of G and element $g \in G$, we define the **conjugate** subgroup of H in G to be the set

$$gHg^{-1} = \left\{ ghg^{-1} : h \in H \right\}.$$

Prove gHg^{-1} is indeed a subgroup of G.

- 3. (15 points) Let $\phi: G \to G'$ be an onto homomorphism and let N be a normal subgroup of G. Prove that $\phi(N)$ is a normal subgroup of G'.
- 4. (15 points each) Do any **three** (3) of the following problems.
 - (a) Prove that a group of order 30 can have at most 7 subgroups of order 5.
 - (b) Let a, b be elements in a group G.
 - i. Suppose the product ab has finite order in G. Prove the orders, in G, of ab and ba are the same.
 - ii. Must the orders of ab and ba be the same if the product ab has infinite order in G?
 - (c) Let $\phi : G \to G'$ be a group homomorphism with kernel K.Let H be another subgroup of G. Recall that $HK = \{hk : h \in H, k \in K\}$.Show $\phi^{-1}(\phi(H)) = HK$.
 - (d) Let G, G' be groups.
 - i. What is the order of the product group $G \times G'$?
 - ii. Let $x \in G$ have order m and $y \in G'$ have order n. What is the order of $(x, y) \in G \times G'$? Prove your answer is correct.
 - (e) Let S be a set of groups. Define the relation $\tilde{}$ on S by If $G^{\tilde{}}H$ if and only if G is isomorphic to H. Show this relation is an equivalence relation on S.
 - (f) Let Here $\psi: G \to H$ and $\phi: H \to K$ be homomorphisms. Thus, the composition $\phi \circ \psi: G \to K$ is a function. Prove $\phi \circ \psi$ is also a homomorphism. Describe the kernel of $\phi \circ \psi$.