1.1

November 21, 2000

Exam 2

Name

Technology used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. **Only write on one side of each page.**

The Problems

- 1. (6 points each) Give the definitions of the following.
 - (a) The **product group** $G \times G'$ of two groups G and G'.
 - (b) The **quotient group** G/K of a group G by a normal subgroup K. Be sure to indicate the binaray operation in G/K.
 - (c) The **orbit** of an element $s \in S$ where G is a group acting on the set S.
 - (d) The **stabilizer** of an element $s \in S$ where G is a group acting on the set S.
 - (e) A **rigid motion** of the plane to itself.
- 2. (10 points each) If G is a group acting on the set S, the element s is arbitrary in S, and $G_s = H$ is the stabilizer of s in G, then there is a map from the coset space of G_s in G to the orbit of s defined by

$$\begin{array}{rcl} \phi & : & G/G_s \to O_s \\ \phi \left(aH \right) & = & as \end{array}$$

Prove that this map ϕ is

(a) one-to-one

Proof: We show: if $\phi(aG_s) = \phi(bG_s)$, then $aG_s = bG_s$

$$\phi(aG_s) = \phi(bG_s)$$

$$as = bs$$

$$s = (a^{-1}b)s, \text{ so } a^{-1}b \text{ stabilizes } s$$

$$a^{-1}b \in G_s \text{ and by the rules for cosets}$$

$$aG_s = bG_s.$$

(b) onto

i. **Proof:** We show, if $s' \in O_s$ then there is a coset gG_s for which $\phi(gG_s) = s'$

 $s' \in O_s$ so there is a $g \in G$ with s' = gs, so gG_s is a coset of G_s and $s' = gs = \phi (gG_s)$, Thus, ϕ is an onto map. 3. (15 points) Use a group action to count the rotational symmetries of a cube. Be explicit about what you choose as your set S.

Proof: Let S be the six faces of the cube and $s \in S$ one face. Then the stabilizer of s, O_s , consists of the four rotations by multiples of $\pi/4$ about an axis the center and perpendicular to s. The orbit of s is all six faces of the cube since it is clear that any face can be rotated to any other face by a symmetry of the cube. Thus, if G is the group of rotational symmetries of the cube, then

$$|G| = |G_s| \cdot |O_s|$$
$$= 4 \cdot 6$$
$$= 24.$$

- 4. (10 points) Do **one** of the following.
 - (a) Prove if |G| = p where p is a prime number, then G is isomorphic to a cyclic group of order p. **Proof:** Let G be a group of order p where p is a prime and let a be any non-identity element of G. Then, by Lagrange's Theorem, |⟨a⟩| divides |G| = p. But since a ∈ ⟨a⟩, |⟨a⟩| > 1 and the primality of p yields |⟨a⟩| = p. Since the only subgroup of G that has the same order as G is G itself, we conclude ⟨a⟩ = G.
 - (b) Determine all automorphisms of the group C_4 . Be sure to show your functions are automorphisms.

Proof: Let $\phi : C_4 \to C_4$ be an automorphism. Here $C_4 = \left\{\rho_0, \rho_{\pi/2}, \rho_{\pi}, \rho_{3\pi/2}\right\}$ is the cyclic group of rotations about the origin of order 4. Clearly the orders of the various elements of C_4 are: $|\rho_0| = 1, |\rho_{\pi/2}| = 4, |\rho_{\pi}| = 2, |\rho_{3\pi/2}| = 4$. Thus the automorphism ϕ must take ρ_0 and ρ_{π} to themselves. However, as far as orders of elements are concerned, ϕ might take the remaining two elements either to themselves or interchange them. We see that either possibility is possible since the two mappings: ϕ_1 which takes each element a to itself and ϕ_2 which takes every element to its inverse are both automorphisms and are, in fact, the only automorphisms of C_4 .

- 5. (15 points) Do **one** of the following.
 - (a) Let G be a subgroup of M that contains rotations by $\theta = \pi$ about two points: the origin and the point with coordinates $\begin{bmatrix} 1\\ 0 \end{bmatrix}$. Prove **algebraically** that G contains a translation. [See the Useful Facts at the end of the examination for tools.]

Proof: Let $a = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Then, rotations in G about the origin have the form ρ_{θ} and rotations about the point a have the form $t_a \rho_{\theta} t_a^{-1}$. Since G contains rotations of size π about both points, then, by closure, G contains the element

$$(\rho_{-\pi}) (t_a \rho_{\pi} t_a^{-1}) = \rho_{-\pi} (t_a \rho_{\pi}) t_a^{-1} = \rho_{-\pi} (\rho_{\pi} t_{a'}) t_a^{-1} = (\rho_{-\pi} \rho_{\pi}) t_{a'} t_a^{-1} = t_{a'} t_{-a}.$$

In this last form, the element is clearly a translation.

(b) Show **algebraically** that the successive reflection across two different lines through the origin is a rotation. For your proof, use the specific lines that form angles of $\pi/4$ and $\pi/2$ with the

positive x_1 - axis. What is the angle θ for the resulting rotation ρ_{θ} ? [See the Useful Facts at the end of the examination for tools.]

Proof: Reflection about the lines with angles $\pi/4$, $\pi/2$ are given by $\rho_{\pi/2}r$ and $\rho_{\pi}r$, respectively. Then

$$\begin{pmatrix} \rho_{\pi/2}r \end{pmatrix} (\rho_{\pi}r) &= \rho_{\pi/2} (r\rho_{\pi}) r \\ &= \left(\rho_{\pi/2}\rho_{-\pi}\right) (rr) \\ &= \rho_{-\pi/2}.$$

Thus, the composition of the two reflections (in the order given) is equivalent to rotating around the origin clockwise by an angle of $\pi/2$.

6. (10 points) Find all matrices in the stabilizer of the matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ if the group action is conjugation in GL(2, R). A useful fact is that $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Proof: We wish to find all matrices A for which $A\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} A^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$. That is, find all matrices A for which

$$A\begin{bmatrix} 1 & 0\\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 2 \end{bmatrix} A$$
$$\begin{bmatrix} a & b\\ c & d \end{bmatrix} \begin{bmatrix} 1 & 0\\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 2 \end{bmatrix} \begin{bmatrix} a & b\\ c & d \end{bmatrix}$$
$$\begin{bmatrix} a & 2b\\ c & 2d \end{bmatrix} = \begin{bmatrix} a & b\\ 2c & 2d \end{bmatrix}.$$

From here it is easy to see that a and d can be any real numbers but b = c = 0. Thus, the stabizer of $s = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ is the set $O_s = \left\{ \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} \right\}$ of diagonal 2×2 matrices.

1.2 Useful Facts

- Theorem 1 Every rigid motion can be written in one of the forms (uniquely) $m = t_a \rho_\theta$ or $m = t_a \rho_\theta r$ by using the following formulas for composition.
 - 1. $t_a t_b = t_{a+b}$ 2. $\rho_{\theta} \rho_{\eta} = \rho_{\theta+\eta}$ 3. rr = i4. $\rho_{\theta} t_a = t_{a'} \rho_{\theta}$, where $a' = \rho_{\theta} (a)$ 5. $rt_a = t'_a r$, where a' = r (a)
 - 6. $r\rho_{\theta} = \rho_{-\theta}r$.