1.1

Exam 2
November 21, 2000

Technology used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

1. (6 points each) Give the definitions of the following.
(a) The product group $G \times G^{\prime}$ of two groups G and G^{\prime}.
(b) The quotient group G / K of a group G by a normal subgroup K. Be sure to indicate the binaray operation in G / K.
(c) The orbit of an element $s \in S$ where G is a group acting on the set S.
(d) The stabilizer of an element $s \in S$ where G is a group acting on the set S.
(e) A rigid motion of the plane to itself.
2. (10 points each) If G is a group acting on the set S, the element s is arbitrary in S, and $G_{s}=H$ is the stabilizer of s in G, then there is a map from the coset space of G_{s} in G to the orbit of s defined by

$$
\begin{aligned}
\phi & : G / G_{s} \rightarrow O_{s} \\
\phi(a H) & =a s
\end{aligned}
$$

Prove that this map ϕ is
(a) one-to-one

Proof: We show: if $\phi\left(a G_{s}\right)=\phi\left(b G_{s}\right)$, then $a G_{s}=b G_{s}$

$$
\begin{aligned}
\phi\left(a G_{s}\right) & =\phi\left(b G_{s}\right) \\
a s & =b s \\
s & =\left(a^{-1} b\right) s, \text { so } a^{-1} b \text { stabilizes } s \\
a^{-1} b & \in G_{s} \text { and by the rules for cosets } \\
a G_{s} & =b G_{s} .
\end{aligned}
$$

(b) onto
i. Proof: We show, if $s^{\prime} \in O_{s}$ then there is a coset $g G_{s}$ for which $\phi\left(g G_{s}\right)=s^{\prime}$

$$
\begin{aligned}
s^{\prime} \in & O_{s} \text { so there is a } g \in G \text { with } \\
s^{\prime}= & g s, \text { so } g G_{s} \text { is a coset of } G_{s} \text { and } \\
s^{\prime}= & g s=\phi\left(g G_{s}\right) \\
& \text { Thus, } \phi \text { is an onto map. }
\end{aligned}
$$

3. (15 points) Use a group action to count the rotational symmetries of a cube. Be explicit about what you choose as your set S.
Proof: Let S be the six faces of the cube and $s \in S$ one face. Then the stabilizer of s, O_{s}, consists of the four rotations by multiples of $\pi / 4$ about an axis the center and perpendicular to s. The orbit of s is all six faces of the cube since it is clear that any face can be rotated to any other face by a symmetry of the cube. Thus, if G is the group of rotational symmetries of the cube, then

$$
\begin{aligned}
|G| & =\left|G_{s}\right| \cdot\left|O_{s}\right| \\
& =4 \cdot 6 \\
& =24 .
\end{aligned}
$$

4. (10 points) Do one of the following.
(a) Prove if $|G|=p$ where p is a prime number, then G is isomorphic to a cyclic group of order p.

Proof: Let G be a group of order p where p is a prime and let a be any non-identity element of G. Then, by Lagrange's Theorem, $|\langle a\rangle|$ divides $|G|=p$. But since $a \in\langle a\rangle,|\langle a\rangle|>1$ and the primality of p yields $|\langle a\rangle|=p$. Since the only subgroup of G that has the same order as G is G itself, we conclude $\langle a\rangle=G$.
(b) Determine all automorphisms of the group C_{4}. Be sure to show your functions are automorphisms.
Proof: Let $\phi: C_{4} \rightarrow C_{4}$ be an automorphism. Here $C_{4}=\left\{\rho_{0}, \rho_{\pi / 2}, \rho_{\pi}, \rho_{3 \pi / 2}\right\}$ is the cyclic group of rotations about the origin of order 4. Clearly the orders of the various elements of C_{4} are: $\left|\rho_{0}\right|=1,\left|\rho_{\pi / 2}\right|=4,\left|\rho_{\pi}\right|=2,\left|\rho_{3 \pi / 2}\right|=4$. Thus the automorphism ϕ must take ρ_{0} and ρ_{π} to themselves. However, as far as orders of elements are concerned, ϕ might take the remaining two elements either to themselves or interchange them. We see that either possibility is possible since the two mappings: ϕ_{1} which takes each element a to itself and ϕ_{2} which takes every element to its inverse are both automorphisms and are, in fact, the only automorphisms of C_{4}.
5. (15 points) Do one of the following.
(a) Let G be a subgroup of M that contains rotations by $\theta=\pi$ about two points: the origin and the point with coordinates $\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Prove algebraically that G contains a translation. [See the Useful Facts at the end of the examination for tools.]
Proof: Let $a=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Then, rotations in G about the origin have the form ρ_{θ} and rotations about the point a have the form $t_{a} \rho_{\theta} t_{a}^{-1}$. Since G contains rotations of size π about both points, then, by closure, G contains the element

$$
\begin{aligned}
\left(\rho_{-\pi}\right)\left(t_{a} \rho_{\pi} t_{a}^{-1}\right) & =\rho_{-\pi}\left(t_{a} \rho_{\pi}\right) t_{a}^{-1} \\
& =\rho_{-\pi}\left(\rho_{\pi} t_{a^{\prime}}\right) t_{a}^{-1} \\
& =\left(\rho_{-\pi} \rho_{\pi}\right) t_{a^{\prime}} t_{a}^{-1} \\
& =t_{a^{\prime}} t_{-a} .
\end{aligned}
$$

In this last form, the element is clearly a translation.
(b) Show algebraically that the successive reflection across two different lines through the origin is a rotation. For your proof, use the specific lines that form angles of $\pi / 4$ and $\pi / 2$ with the
positive x_{1} - axis. What is the angle θ for the resulting rotation ρ_{θ} ? [See the Useful Facts at the end of the examination for tools.]
Proof: Reflection about the lines with angles $\pi / 4, \pi / 2$ are given by $\rho_{\pi / 2} r$ and $\rho_{\pi} r$, respectively. Then

$$
\begin{aligned}
\left(\rho_{\pi / 2} r\right)\left(\rho_{\pi} r\right) & =\rho_{\pi / 2}\left(r \rho_{\pi}\right) r \\
& =\left(\rho_{\pi / 2} \rho_{-\pi}\right)(r r) \\
& =\rho_{-\pi / 2} .
\end{aligned}
$$

Thus, the composition of the two reflections (in the order given) is equivalent to rotating around the origin clockwise by an angle of $\pi / 2$.
6. (10 points) Find all matrices in the stabilizer of the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ if the group action is conjugation in $G L(2, R)$. A useful fact is that $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.
Proof: We wish to find all matrices A for which $A\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right] A^{-1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$. That is, find all matrices A for which

$$
\begin{aligned}
A\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] & =\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] A \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] } & =\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
{\left[\begin{array}{ll}
a & 2 b \\
c & 2 d
\end{array}\right] } & =\left[\begin{array}{cc}
a & b \\
2 c & 2 d
\end{array}\right] .
\end{aligned}
$$

From here it is easy to see that a and d can be any real numbers but $b=c=0$. Thus, the stabizer of $s=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ is the set $O_{s}=\left\{\left[\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right]\right\}$ of diagonal 2×2 matrices.

1.2 Useful Facts

- Theorem 1 Every rigid motion can be written in one of the forms (uniquely) $m=t_{a} \rho_{\theta}$ or $m=t_{a} \rho_{\theta} r$ by using the following formulas for composition.

1. $t_{a} t_{b}=t_{a+b}$
2. $\rho_{\theta} \rho_{\eta}=\rho_{\theta+\eta}$
3. $r r=i$
4. $\rho_{\theta} t_{a}=t_{a^{\prime}} \rho_{\theta}$, where $a^{\prime}=\rho_{\theta}(a)$
5. $r t_{a}=t_{a}^{\prime} r$, where $a^{\prime}=r(a)$
6. $r \rho_{\theta}=\rho_{-\theta} r$.
