Mathematics 433

Second set of Additional Problems

- 1. An *n* th root of unity is a complex number *z* such that $z^n = 1$. Prove that the *n* th roots of unity form a cyclic subgroup of order *n* of the group $G = (C, \times)$.
- 2. Do the following.
 - (a) Prove that in any group, the orders of *ab* and *ba* are the same.
 - (b) Describe all groups G that contain no proper subgroups.
 - (c) Let G be a cyclic group of order n and let r be an integer dividing n. Prove that G contains exactly one subgroup of order r.
- 3. Prove that the additive group of real numbers is isomorphic to the multiplicative group of postive reals.
- 4. Prove that the products *ab* and *ba* are conjugate elements in a group.
- 5. Let a, b be elements of a group G, and let $a' = bab^{-1}$. Prove that a = a' if and only if a and b commute.

6. Do:

- (a) Let $b' = aba^{-1}$. Prove that $(b')^n = ab^n a^{-1}$.
- (b) Prove that if $aba^{-1} = b^2$, then $a^3ba^{-3} = b^8$.
- 7. Prove that the matrices $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ are conjugate elements in the group GL(2, R) but they are not conjugate when regarded as elements of $SL(2, R) = \{A \in GL(2, R) : \det(A) = 1\}$.
- 8. Prove that the map $\phi: GL(n, R) \to GL(n, R)$ defined by $\phi(A) = (A^t)^{-1}$ is an automorphism.
- 9. Let G be a group with law of composition written x # y. Let H be a group with law of composition $u \circ v$. What is the condition for a map $\phi : G \to H$ to be a homomorphism?
- 10. Let $\phi: G \to G'$ be a group homomorphism. Prove that for any elements a_1, \dots, a_k of G, $\phi(a_1 \dots a_k) = \phi(a_1) \dots \phi(a_k)$.
- 11. Describe all homomorphisms $\phi : (Z, +) \to (Z, +)$. Determine which are one-to-one, which are onto and which are isomorphisms.
- 12. Find all subgroups of S_3 and determine which of these are normal.
- 13. Find all subgroups of the quaternion group and determine which of these are normal.
- 14. Prove that the composition $\phi \circ \psi$ of homomorphisms is again a homomorphism. describe the kernel of $\phi \circ \psi$.
- 15. Do:
 - (a) Let H be a subgroup of G and let $g \in G$. The **conjugate subgroup** gHg^{-1} of G is defined to be teh set of all conjugates ghg^{-1} where $h \in H$. Prove that $gHg^{-1}is$ a subgroup of G.
 - (b) Prove that a subgroup H of G is normal in G if and only if $gHg^{-1} = H$ for all $g \in G$.

- 16. Let N be a normal subgroup of G and let $g \in G$, $n \in N$. Prove that $g^{-1}ng \in N$.
- 17. Let ϕ , ψ be two homomorphisms from a group G to another group G' and let $H \subset G$ be the subset $\{x \in G : \phi(x) = \psi(x)\}$. Prove or disprove: H is a subgroup of G.
- 18. Prove that the center of a group is a normal subgroup.
- 19. Prove that the center of GL(n, R) is teh subgroup $Z = \{cI_n : c \in R, c \neq 0\}$.
- 20. Prove that if a group contains exactly one element of order 2, then that element is in the center of the group.
- 21. Prove by giving an explicit example that GL(2, R) is not a normal subgroup of GL(2, C).
- 22. Let $\phi: G \to G'$ be an onto homomorphism and let N be a normal subgroup of G. Prove that $\phi(N)$ is a normal subgroup of G'.