1 Additional Exercises: Symmetry of Plane Figures

- 1. Prove the set of symmetries of a figure F in the plane form a group.
- 2. List all symmetries of
 - (a) a square
 - (b) a regular pentagon
- 3. List all symmetries of the following figures
 - (a) Figure 1.4
 - (b) Figure 1.5
 - (c) Figure 1.6
 - (d) Figure 1.7
- 4. Compute the fixed point of $t_a \rho_{\theta}$ algebraically.
- 5. Explicitly verify the rules:

(a)
$$t_a t_b = t_{a+b}$$

(b) $\rho_{\theta} \rho_{\eta} = \rho_{\theta+\eta}$
(c) $rr = i$
(d) $\rho_{\theta} t_a = t_{a'} \rho_{\theta}$, where $a' = \rho_{\theta} (a)$
(e) $rt_a = t'_a r$, where $a' = r (a)$
(f) $r\rho_{\theta} = \rho_{-\theta} r$.

- 6. Prove that O is not a normal subgroup of M.
- 7. Let SM denore the subset of orientation-preserving motions of the plane. Prove SM is a normal subgroup of M and determine its index in M.
- 8. Prove the map $\phi: M \to \{i, r\}$ given by $\phi(t_a \rho_\theta) = i$ and $\phi(t_a \rho_\theta r) = r$ is a homomorphism.
- 9. Compute the effect of a rotation of the axes through an angle η on the expressions $t_a \rho_{\theta}$ and $t_a \rho_{\theta} r$ for a motion.
- 10. Find an isomorphism from the group SM to the subgroup of $GL(2, \mathbb{C})$ of matrices of the form $\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$ with |a| = 1.

11. Do

- (a) Write the formulas for teh motions t_a , ρ_{θ} and r it tems of the complex variables z = x + iy.
- (b) Show every motion has the form $m(z) = \alpha z + \beta$ or $m(z) = \alpha \overline{z} + \beta$, where α, β are complex numbers with $|\alpha| = 1$.