1 Additional Exercises: Isomorphisms

- Let a, b be elements of a group G, and let $a' = bab^{-1}$. Prove a = a' if and only if a and b commute.
- a
 - 1. Let $b' = aba^{-1}$. Prove that $(b')^n = ab^n b^{-1}$
 - 2. Prove if $aba^{-1} = b^2$, then $a^3ba^{-3} = b^8$.
- Let $\phi: G \to G'$ be an isomorphism of groups, let $x, y \in G$ and $x' = \phi(x)$ and $y' = \phi(y)$.
 - 1. Prove the orders of x and x' are equal.
 - 2. Prove if xyx = yxy, then x'y'x' = y'x'y'.
 - 3. Prove $\phi(x^{-1}) = (x')^{-1}$.
- Prove $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ are conjugate elements in GL(2, R) but are not conjugate in SL(2, R).
- Prove the map $\phi: GL(n, R) \to GL(n, R)$ given by $\phi(A) = (A^t)^{-1}$ is an automorphism.