Additional Problems on Homomorphisms

1. Prove that the additive group of real numbers is isomorphic to the multiplicative group of postive reals.
2. Prove that the products $a b$ and $b a$ are conjugate elements in a group.
3. Let a, b be elements of a group G, and let $a^{\prime}=b a b^{-1}$. Prove that $a=a^{\prime}$ if and only if a and b commute.
4. Do:
(a) Let $b^{\prime}=a b a^{-1}$. Prove that $\left(b^{\prime}\right)^{n}=a b^{n} a^{-1}$.
(b) Prove that if $a b a^{-1}=b^{2}$, then $a^{3} b a^{-3}=b^{8}$.
5. Prove that the matrices $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ are conjugate elements in the group $G L(2, R)$ but they are not conjugate when regarded as elements of $S L(2, R)=\{A \in G L(2, R): \operatorname{det}(A)=1\}$.
6. Prove that the map $\phi: G L(n, R) \rightarrow G L(n, R)$ defined by $\phi(A)=\left(A^{t}\right)^{-1}$ is an automorphism.
7. Let G be a group with law of composition written $x \# y$. Let H be a group with law of composition $u \circ v$. What is the condition for a map $\phi: G \rightarrow H$ to be a homomorphism?
8. Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism. Prove that for any elements a_{1}, \cdots, a_{k} of $G, \phi\left(a_{1} \cdots a_{k}\right)=$ $\phi\left(a_{1}\right) \cdots \phi\left(a_{k}\right)$.
9. Describe all homomorphisms $\phi:(Z,+) \rightarrow(Z,+)$. Determine which are one-to-one, which are onto and which are isomorphisms.
10. Find all subgroups of S_{3} and determine which of these are normal.
11. Find all subgroups of the quaternion group and determine which of these are normal.
12. Prove that the composition $\phi \circ \psi$ of homomorphisms is again a homomorphism. describe the kernel of $\phi \circ \psi$.
13. Do:
(a) Let H be a subgroup of G and let $g \in G$. The conjugate subgroup $g H^{-1}$ of G is defined to be teh set of all conjugates $g h g^{-1}$ where $h \in H$. Prove that $g H^{-1}$ is a subgroup of G.
(b) Prove that a subgroup H of G is normal in G if and only if $g \mathrm{Hg}^{-1}=H$ for all $g \in G$.
14. Let N be a normal subgroup of G and let $g \in G, n \in N$. Prove that $g^{-1} n g \in N$.
15. Let ϕ, ψ be two homomorphisms from a group G to another group G^{\prime} and let $H \subset G$ be teh subset $\{x \in G: \phi(x)=\psi(x)\}$. Prove or disprove: H is a subgroup of G.
16. Prove that the center of a group is a normal subgroup.
17. Prove that the center of $G L(n, R)$ is teh subgroup $Z=\left\{c I_{n}: c \in R, c \neq 0\right\}$.
18. Prove that if a group contains exactly one element of order 2 , then that element is in the center of the group.
19. Prove by giving an explicit example that $G L(2, R)$ is not a normal subgroup of $G L(2, C)$.
20. Let $\phi: G \rightarrow G^{\prime}$ be an onto homomorphism and let N be a normal subgroup of G. Prove that $\phi(N)$ is a normal subgroup of G^{\prime}.
