1 Additional Exercises: Group Actions and Cosets

- 1. Determine the group of automorphisms of the following groups.
 - (a) C_4
 - (b) C_6
 - (c) $C_2 \times C_2$
- 2. Let S be a set on which the group G operates. Prove the relation $s \sim s'$ if s' = gs for some $g \in G$ is an equivalence relation.
- 3. Let $\phi: G \to G'$ be a homomorphism, and let S be a set on which G' acts. Show how to define a group action of G on S using the homomorphism ϕ .
- 4. Do both of the following

(a) Describe the orbit and the stabilizer of the matrix \$\begin{bmatrix}{1 & 0 \\ 0 & 2\$}\$ under conjugation in \$GL(2, R)\$.
(b) Find the number or elements in the orbit of the matrix \$\begin{bmatrix}{1 & 0 \\ 0 & 2\$}\$ under conjugation in \$GL(2, F_3)\$. Here \$F_3\$ is the set of integers \$\{0, 1, 2\}\$ with both addition and multiplication done modulo 3. Thus, in \$F_3\$, we have \$2^3 = 8 = 2(3) + 2 = 2\$ (mod 3) and \$1 + 2 = 0\$ (mod 3)\$.

- 5. What is the stabilizer of the coset aH for the action of G on G/H?
- 6. Describe all ways in which S_3 can operate on a set of four elements.