1 Additional Exercises: Modular Arithmetic

1. Let G be the group of invertible, real, upper triangular 2×2 matrices. Determine whether the or not the following sets are normal subgroups H of G. If they are, use the first isomorphism theorem to identify G/H.

(a)
$$H = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} : a_{11} = 1 \right\}$$

(b) $H = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} : a_{12} = 0 \right\}$
(c) $H = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} : a_{11} = a_{22} \right\}$
(d) $H = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} : a_{11} = a_{22} = 1 \right\}$

- 2. Identify the quotient group \mathbf{R}^x/P where \mathbf{R}^x is the group of all non-zero real numbers under the binary operation of multiplication and P denotes the subgroup of positive real numbers.
- 3. Find all normal subgroups N of the quaternion group H and identify the quotients H/N.
- 4. Prove the subset H of $G = GL(n, \mathbf{R})$ of matrices whose determinant is positive forms a normal subgroup, and describe the quotient group G/H.
- 5. Let $K \subset H \subset G$ be subgroups of a finite group G. Prove the formula

$$[G:K] = [G:H] [H:K].$$