1 Additional Exercises: Modular Arithmetic

1. Let G be the group of invertible, real, upper triangular 2×2 matrices. Determine whether the or not the following sets are normal subgroups H of G. If they are, use the first isomorphism theorem to identify G / H.
(a) $H=\left\{\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]: a_{11}=1\right\}$
(b) $H=\left\{\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]: a_{12}=0\right\}$
(c) $H=\left\{\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]: a_{11}=a_{22}\right\}$
(d) $H=\left\{\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]: a_{11}=a_{22}=1\right\}$
2. Identify the quotient group \mathbf{R}^{x} / P where \mathbf{R}^{x} is the group of all non-zero real numbers under the binary operation of multiplication and P denotes the subgroup of positive real numbers.
3. Find all normal subgroups N of the quaternion group H and identify the quotients H / N.
4. Prove the subset H of $G=G L(n, \mathbf{R})$ of matrices whose determinant is positive forms a normal subgroup, and describe the quotient group G / H.
5. Let $K \subset H \subset G$ be subgroups of a finite group G. Prove the formula

$$
[G: K]=[G: H][H: K] .
$$

