1 Additional Exercises: Modular Arithmetic

- 1. (a) Prove the square a^2 of an integer a is congruent to 0 or 1 modulo 4.
 - (b) What are the possible values of a^2 modulo 8?
- 2. (a) Prove that 2 has no multiplicative inverse modulo 6.
 - (b) Determine all integers n such that 2 has a multiplicative inverse modulo n.
- 3. Solve the congruence $2x \equiv 5$
 - (a) modulo 9
 - (b) modulo 6
- 4. Determine the integers n for which the system of congruences $x + y \equiv 2 \pmod{n}$ and $2x 3y \equiv 3 \pmod{n}$ has a solution.
- 5. Use the theorem about subgroups of \mathbf{Z} we proved earlier to prove the *Chinese Remainder Theorem*.

Theorem 1 (Earlier Result) Let a, b be integers, not both zero, and let d be the positive integer which generates the subgroup aZ + bZ. Then

Theorem 2 1. (a) d can be written in the form d = ar + bs

- (b) d divides both a and b
- (c) If an integer c divided both a and b, then it also divides d.
- 1. Theorem 3 (Chinese Remainder Theorem) Let m, n, α, β be integers and assume gcd(m, n) = 1. Then there is an integer x such that $x \equiv \alpha$ (modulo m) and $x \equiv \beta$ (modulo n).