1 Additional Exercises: Modular Arithmetic

1. (a) Prove the square a^{2} of an integer a is congruent to 0 or 1 modulo 4.
(b) What are the possible values of a^{2} modulo 8 ?
2. (a) Prove that 2 has no multiplicative inverse modulo 6.
(b) Determine all integers n such that 2 has a multiplicative inverse modulo n.
3. Solve the congruence $2 x \equiv 5$
(a) modulo 9
(b) modulo 6
4. Determine the integers n for which the system of congruences $x+y \equiv 2$ (modulo n) and $2 x-3 y \equiv 3$ (modulo n) has a solution.
5. Use the theorem about subgroups of \mathbf{Z} we proved earlier to prove the Chinese Remainder Theorem.

Theorem 1 (Earlier Result) Let a, b be integers, not both zero, and let d be the positive integer which generates the subgroup $a Z+b Z$. Then

Theorem 2 1. (a) d can be written in the form $d=a r+b s$
(b) d divides both a and b
(c) If an integer c divided both a and b, then it also divides d.

1. Theorem 3 (Chinese Remainder Theorem) Let m, n, α, β be integers and assume $\operatorname{gcd}(m, n)=$ 1. Then there is an integer x such that $x \equiv \alpha$ (modulo m) and $x \equiv \beta$ (modulo n).
