1 Additional Exercises: Finite Group of Motions

- 1. Let D_n denote the dihedral group. Express the product $x^2yx^{-1}y^{-1}x^3y^3$ in the form x^iy^j in D_n .
- 2. List all the subgroups of D_4 and determine which are normal.
- 3. Find all proper normal subgroups and identify the quotient groups of the groups D_{13} and D_{15} .
- 4. Prove any discrete group G consisting of rotations about the origin is cyclic and is generated by ρ_{θ} where θ is the smallest angle of rotation in G.
 - (a) Advanced Calculus students, or others interested in the completeness property of the real numbers, may wish to prove that any discrete group G consisting of rotations about the origin really does have a smallest angle of rotation.
- 5. Let G be a subgroup of M that contains rotations about two different points. Prove algebraically that G contains a translation.
- 6. Determine the point group for each of the patterns depicted in the figure on the handout labelled "Extra Exercise: Finite Group of Motions #6."
- 7. Prove that every discrete subgroup of O is finite.
- 8. Prove the group of symmetries of the frieze pattern

 $\cdots E E E E E E E E \cdots$

is isomorphic to the direct product $C_2 \times C_\infty$ of a cyclic group of order 2 and and infinite cyclic group.

9. Let G be the group of symmetries of the frieze pattern

 $\cdots \subset \supset \subset \supset \subset \supset \cdots$

- (a) Determine the point group \overline{G} of G.
- (b) For each element \overline{g} of \overline{G} , and each element g of G which represents \overline{g} , describe the action of g geometrically.
- (c) Let H be the subgroup of translations in G. Determine [G:H].
- 10. Let G be a discrete group in which every element is orientation-preserving. Prove the point group \overline{G} is a cyclic group of rotations and there is a point p in the plane such that the set of group elements which fix p is isomorphic to \overline{G} .
- 11. Let N denote the group of rigid motions of the line $l = R^1$. Some elements of N are

 $t_a: t_a(x) = x + a \text{ and } s: s(x) = -x.$

- (a) Show that $\{t_a, t_as\}$ are all of the elements of N, and describe their actions on l geometrically. [Note that |N| is infinite since there is a distinct t_a for each real number a.]
- (b) Compute the products $t_a t_b$, st_a , ss.
- (c) Find all discrete subgroups of N which contain a translation. It will be convenient to choose your origin and unit length with reference to the particular subgroup. Prove your list is complete.
- 12. Prove if the point group of a lattice group G is C_6 , then $L = L_G$ is an equilateral triangular lattice, and G is the group of all rotational symmetries of L about the origin.
- 13. Prove if the point group of a lattice group G is D_6 , then $L = L_G$ is an equilateral triangular lattice, and G is the group of all symmetries of L.