1 Additional Exercises: Finite Group of Motions

1. Let D_{n} denote the dihedral group. Express the product $x^{2} y x^{-1} y^{-1} x^{3} y^{3}$ in the form $x^{i} y^{j}$ in D_{n}.
2. List all the subgroups of D_{4} and determine which are normal.
3. Find all proper normal subgroups and identify the quotient groups of the groups D_{13} and D_{15}.
4. Prove any discrete group G consisting of rotations about the origin is cyclic and is generated by ρ_{θ} where θ is the smallest angle of rotation in G.
(a) Advanced Calculus students, or others interested in the completeness property of the real numbers, may wish to prove that any discrete group G consisting of rotations about the origin really does have a smallest angle of rotation.
5. Let G be a subgroup of M that contains rotations about two different points. Prove algebraically that G contains a translation.
6. Determine the point group for each of the patterns depicted in the figure on the handout labelled "Extra Exercise: Finite Group of Motions \#6."
7. Prove that every discrete subgroup of O is finite.
8. Prove the group of symmetries of the frieze pattern
...EEEEEEEE...
is isomorphic to the direct product $C_{2} \times C_{\infty}$ of a cyclic group of order 2 and and infinite cyclic group.
9. Let G be the group of symmetries of the frieze pattern
```
\cdots\subset\supset\supset\supset\supset\subset\supset\cdots
```

(a) Determine the point group \bar{G} of G.
(b) For each element \bar{g} of \bar{G}, and each element g of G which represents \bar{g}, describe the action of g geometrically.
(c) Let H be teh subgroup of translations in G. Determine $[G: H]$.
10. Let G be a discrete group in which every element is orientation-preserving. Prove the point group \bar{G} is a cyclic group of rotations and there is a point p in the plane such that the set of group elements which fix p is isomorphic to \bar{G}.
11. Let N denote the group of rigid motions of the line $l=R^{1}$. Some elements of N are

$$
t_{a}: t_{a}(x)=x+a \text { and } s: s(x)=-x .
$$

(a) Show that $\left\{t_{a}, t_{a} s\right\}$ are all of the elements of N, and describe their actions on l geometrically. [Note that $|N|$ is infinite since there is a distinct t_{a} for each real number a.]
(b) Compute the products $t_{a} t_{b}, s t_{a}, s s$.
(c) Find all discrete subgroups of N which contain a translation. It will be convenient to choose your origin and unit length with reference to the particular subgroup. Prove your list is complete.
12. Prove if the point group of a lattice group G is C_{6}, then $L=L_{G}$ is an equilateral triangular lattice, and G is the group of all rotational symmetries of L about the origin.
13. Prove if the point group of a lattice group G is D_{6}, then $L=L_{G}$ is an equilateral triangular lattice, and G is the group of all symmetries of L.

