1 Additional Exercises: Equivalence Relations

- Prove the nonempty fibres of a map ϕ form a partition of the domain.
- Let S be a set of groups. Prove the relation $G^{\sim}H$ if G is isomorphic to H is an equivalence relation on S.
- Let H be a subgroup of a group G.Prove the relation defined by the rule $a^{\sim}b$ if $b^{-1}a \in H$ is an equivalence relation on G.
- With each of the following subsets R of the (x, y) plane, determine which of the three defining axioms of an equivalence relation where $x \, y$ if and only if $(x, y) \in R$.
 - 1. $R = \{(s, s) : s \text{ a real number}\}$
 - 2. $R = \{\}$ 3. $R = \{(x, y) : y = 0\}$ 4. $R = \{(x, y) : xy + 1 = 0\}$ 5. $R = \{(x, y) : x^2y - xy^2 - x + y = 0\}$
 - 6. $R = \{(x, y) : x^2 xy + 2x 2y = 0\}.$
- Draw the fibres of the map from the (x, z) plane to the y axis defined by the map y = zx.