Mar 8, 2005
Name

Directions: Only write on one side of each page.

I. Do any five (5) of the following

1. Prove the "Opposite Side Lemma": Given $A * B * C$ and l any line other than $\overleftrightarrow{A B}$ meeting line $\overleftrightarrow{A B}$ at point B. Then points A and C are on opposite sides of line l.
2. Let M be a projective plane and let M^{\prime} be the interpretation of the point, line, and incident where the points of M^{\prime} are interpreted to be the lines of M, the lines of M^{\prime} are interpreted to be the points of M, and a point and line of M^{\prime} are incident if and only if the corresponding line and point of M are incident.
Do one (1) of the following.
(a) Prove that Incident Axiom 3 "makes sense" in M^{\prime}.
(b) Prove that each line of M^{\prime} is incident with at least three points of M^{\prime}.
3. Using any previous results, prove Proposition 3.18.

If in $\triangle A B C$ we have $\measuredangle B \cong \measuredangle C$, then $A B \cong A C$ and $\triangle A B C$ is isosceles.
4. Justify each step in the following proof of Proposition 3.11.
(a) Assume on the contrary that $B C$ is not congruent to $E F$.
(b) Then there is a point G on ray $\overrightarrow{E F}$ such that $B C \cong E G$.
(c) $G \neq F$.
(d) Since $A B \cong D E$, adding gives $A C \cong D G$.
(e) However, $A C \cong D F$.
(f) Hence $D F \cong D G$.
(g) Therefore, $F=G$.
(h) Our assumption has led to a contradiction.
(i) Hence, $B C \cong E F$.
5. Using any results up to and including Proposition 3.7, prove the first part of Proposition 3.8.

If D is in the interior of $\measuredangle C A B$ then so is every other point of ray $\overrightarrow{A D}$ except A.
6. Do one (1) of the following that was not a homework problem assigned to you.
(a) Using any results up to and including Proposition 3.9 prove the following.

No line can be contained in a triangle.
(b) Using any results (on the handout sheet of propositions) up to and including Proposition 3.13 (3), prove Proposition 3.13 (4).
If $A B<C D$ and $C D<E F$, then $A B<E F$. [Note: Propositions $3.13(c)$, and $3.13(d)$ in the textbook are numbered 3.13 (3) and 3.13 (4) in the handout sheet.]

