Spring 2003

Exam 2

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. **Only write on one side of each page.**

Problems

- 1. (20 points) Using any previous results, prove part (b) of Proposition 3.21. Given angles $\measuredangle P, \measuredangle Q, \measuredangle R$. If $\measuredangle P < \measuredangle Q$ and $\measuredangle Q \cong \measuredangle R$, then $\measuredangle P < \measuredangle R$.
- 2. (20 points) Using any previous result, prove the following portion of Proposition 4.4. Every angle has a bisector (do NOT show the bisector is unique.)
- 3. (20 points each) Do any three (3) of the following.
 - (a) In the following interpretation, all incidence axioms and the first three betweenness axioms hold. Explain why, Proposition 3.4 fails. Use the usual Euclidean model except for three points A, B, P where P is between A and B in the usual Euclidean sense. For these three points re-interpret between to mean "A is between P and B".
 - (b) Using any previous result, prove Proposition 3.20 (Angle Subtraction). Given \overrightarrow{BG} between \overrightarrow{BA} and \overrightarrow{BC} , \overrightarrow{EH} between \overrightarrow{ED} and \overrightarrow{EF} , $\measuredangle CBG \cong \measuredangle FEH$, and $\measuredangle ABC \cong \measuredangle DEF$. Then $\measuredangle GBA \cong \measuredangle HED$.
 - (c) Using any result through Chapter 4 prove the following. Let γ be a circle with center O, and let A and B be two points on γ . The segment AB is called a **chord** of γ . Let M be the midpoint of segment AB. Prove that if $O \neq M$, then the perpendicular bisector of segment AB passes through the center O of γ .
 - (d) Using any result through the corollaries to Theorem 4.3, prove the following.

If A * B * C and $\overrightarrow{DC} \perp \overrightarrow{AC}$ then AD > BD > CD. (See the figure on the board.)