April 12, 2002

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time

 you use a text or notes or technology.Only write on one side of each page.
"I never know how much of what I say is true." - Bette Midler

The Problems

Do any two (2) of the following

1. Using any result through the corollary to Theorem 4.4 and exercise 26 of chapter 4 , show that if one pair of sides of quadrilateral $\square \mathbf{A} B D C$ satisfies the definition of a convex quadrilateral, then so does the other pair of sides.
2. Using any result previous to Theorem 6.6 and exercise 1 of chapter 6 ,do the following. Suppose lines l and l^{\prime} have a common perpendicular $M M^{\prime}$. Let points A and B be on l so that they do not have M as a midpoint. Prove A and B are not equidistant from l^{\prime}.
3. List statments equivalent in neutral geometry to Hilbert's parallel property. (± 1 point each.)

Do any two (2) of the following

1. Using any result through chapter 4 but no exercises from that chapter, show that statement $S_{4.12}$ is equivalent to Hilbert's parallel postulate. Statement $S_{4.12}$ is "In hyperbolic geometry, if l, m, n are distinct lines, $l \| m$ and $m \| n$ then $l \| n$." [Note: this is an 'if and only if' problem so there are two things to show.]
2. Using any result previous to Proposition 4.3 and exercise 12 of chapter 4 , as well as the existence of the midpoints of segments, prove that every segment has a unique midpoint.
3. Using any result through exercise 13 in chapter 6 do the following. In Theorem 4.1 it was proved in neutral geometry that if alternate interior angles formed by a transversal t to lines l, m are congruent, then the lines l and m are parallel. Strengthen this result in hyperbolic geometry by proving the following.
In hyperbolic geometry, if alternate interior angles formed by a transversal t to lines l, m are congruent, then the lines l and m are divergently parallel. [Hint: Let M be the midpoint of the segment $P Q$ of the transversal. Here, P, Q are the points of intersection with l and m, respectively.]
4. Using any material from chapter 6 , do the following. Let P denote the Euclidean parallel postulate and H denote the hyperbolic parallel axiom. Show that any statement S in the language of neutral geometry that is a theorem in Euclidean geometry $(P \Longrightarrow S)$ and whose negation is a theorem in hyperbolic geometry $\left(H \Longrightarrow{ }^{\sim} S\right.$) is equivalent (in neutral geometry) to the parallel postulate. [This is a slick way to find statements that are equivalent to the parallel postulate.]
