December 15, 2006
\qquad

Technology used:

Directions:

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Exam 5

"Computational" Problems

C.1. Do one (1) of the following:
(a) Given the matrix $A=\left[\begin{array}{cc}p & -q \\ q & p\end{array}\right]$ where p and q are real numbers with $q \neq 0$.
i. Show that the eigenvalues of A are $\lambda_{1}=p+i q$ and $\lambda_{2}=p-i q$.
ii. Determine a nonsingular matrix S and a diagonal matrix D for which $S^{-1} A S=D$.
(b) Prove that $T: P_{2} \rightarrow P_{2}$ defined by $(T f)(x)=f(x+1)$ is both a linear transformation and injective.
C.2. Find the matrix $M_{B, B}^{T}$ of the linear transformation $T: P_{2} \rightarrow P_{2}$ defined by $(T f)(x)=f(x+1)$ where $B=\left\{1, x, x^{2}\right\}$ is the standard basis of P_{2}.

Do Two (2) of these "In text, class or homework" problems

M.1. Prove the third part (transitive property) of Theorem SER, Similarity is an Equivalence Relation: Suppose A, B and C are square matrices of size n. Then
(a) A is similar to A. (Reflexive)
(b) If A is similar to B, then B is similar to A. (Symmetric)
(c) If A is similar to B and B is similar to C, then A is similar to C. (Transitive)
M.2. Prove Theorem EDELI, Eigenvectors with Distinct Eigenvalues are Linearly Independent:

Suppose that A is a square matrix and $S=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{p}\right\}$ is a set of eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{p}$ such that $\lambda_{i} \neq \lambda_{j}$ whenever $i \neq j$. Then S is a linearly independent set.
M.3. Prove Theorem SSRLT, Spanning Set for Range of a Linear Transformation

Suppose that $T: U \rightarrow V$ is a linear transformation and $S=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{t}\right\}$ spans U. Then $R=\left\{T\left(u_{1}\right), T\left(u_{2}\right), T\left(u_{3}\right), \ldots, T\left(u_{t}\right)\right\}$ spans $R(T)$.
M.4. Prove Theorem VRI, Vector Representation is Injective

If $B=\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n}\right\}$ is a basis for the vector space V then The function $\rho_{B}: V \rightarrow \mathbf{C}^{n}$ given in Definition VR [548] is an injective linear transformation.

Do One (1) of these "Not in Text" problems

T.1. Prove: If A is diagonalizable, then A^{T} is similar to A.
T.2. This problem is Theorem CLTLT, Composition of Linear Transformations is a Linear Transformation in the textbook. Prove it, using the definition of linear transformation (you cannot just cite a theorem in the book.)
T.3. Define two vectors f, g in the vector space P_{2} to be orthogonal with respect to the coordinate basis $B=\left\{1, x, x^{2}\right\}$ if $\left\langle\rho_{B}(f), \rho_{B}(g)\right\rangle=0$. [Recall that $\rho_{B}(f)$ is a vector in \mathbf{C}^{3}.] Find a basis for the set of all polynomials g in P_{2} that are orthogonal with respect to the coordinate basis B to the polynomial $f(x)=2+x$.

Cumulative Exam

Do Two (2) of these "In text, class or homework" problems

CC.1. (1 point each) If A is a square matrix, make a list of statements equivalent to " A is nonsingular"
CC.2. Let U, V be abstract vector spaces and $T: U \rightarrow V$ a function. Show that T is a linear transformation if and only if for all $\vec{u}_{1}, \vec{u}_{2} \in U$ and all scalars a, b we have $T\left(a \vec{u}_{1}+b \vec{u}_{2}\right)=a T\left(\vec{u}_{1}\right)+b T\left(\vec{u}_{2}\right) \cdot[\mathrm{Be}$ sure to prove both directions of the "if and only if".]
CC.3. Given an invertible matrix S, prove the following transformation $T: M_{n n} \rightarrow M_{n n}$ is linear.

$$
T(A)=S^{-1} A S
$$

CC.4. If there are square matrices A and B satisfying the property that $B^{2}=A$, then we say B is a square root of A. It is easy to see that a diagonal matrix $D=\left[\begin{array}{ccc}d_{11} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & d_{n n}\end{array}\right]$ has $\left[\begin{array}{ccc}\sqrt{d_{11}} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sqrt{d_{n n}}\end{array}\right]$ as a square root.
Prove that if A is a diagonalizable matrix, then A has a square root.

Do One (1) of these "Not in text" problems

MM.1. It is "obvious" that if $a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{k} \vec{v}_{k}=\overrightarrow{0}$ is a nontrivial relation of linear dependence and if $a_{i} \neq 0$, then \vec{v}_{i} is in the span of the remaining vectors. Use this fact to prove that if a set $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \cdots, \vec{v}_{n}\right\}$ is linearly dependent, then there is an index t for which \vec{v}_{t} is equal to a linear combination of the vectors $\vec{v}_{t+1}, \vec{v}_{t+2}, \cdots, \vec{v}_{n}$ that follow it in S.
MM.2. Use the principle of mathematical induction to prove the following fact we have used repeatedly throughout the semester.
Suppose V is a vector space, $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \cdots, \vec{v}_{n}$ and $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}, \cdots, \vec{u}_{n}$ are vectors in V. Then $\left(\vec{v}_{1}+\vec{v}_{2}+\cdots+\vec{v}_{n}\right)+$ $\left(\vec{u}_{1}+\vec{u}_{2}+\cdots+\vec{u}_{n}\right)=\left(\vec{v}_{1}+\vec{u}_{1}\right)+\left(\vec{v}_{2}+\vec{u}_{2}\right)+\cdots+\left(\vec{v}_{n}+\vec{u}_{n}\right)$ for every positive integer n.

You MUST do both of these problems.

Show your work on this page.

1. (10 points) Prove that the set $Z=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \right\rvert\, 2 x_{1}-4 x_{2}+x_{3}=0\right\}$ is a subspace of \mathbf{C}^{3} by applying the three-part test of Theorem TSS.
2. (10 points) Suppose that A and B are square matrices of the same size, and $A B$ is nonsingular. Give a proof by contradiction that B is nonsingular. (Do not do this problem simply by quoting a theorem from the book.)
