Technology used:

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do Two (2) of these "Computational" Problems

C.1. Without using technology, compute the determinant of the matrix

$$
\left[\begin{array}{rrrr}
0 & -1 & 0 & 1 \\
-2 & 3 & 1 & 6 \\
1 & -2 & 2 & 3 \\
0 & 1 & 0 & -2
\end{array}\right]=5 .
$$

C.2. Prove that the function $T: M_{n, n} \rightarrow M_{n, n}$ given by $T(A)=A+A^{t}$ is a linear transformation
C.3. The number $\lambda=2$ is an eigenvalue of the matrix $\left[\begin{array}{rrr}3 & -2 & 2 \\ -4 & 1 & -2 \\ -5 & 1 & -2\end{array}\right]$. Determine a basis for the eigenspace, $E_{A}(2)$, corresponding to this eigenvalue and state the geometric multiplicity $\gamma_{A}(2)$ of this eigenvalue.
$A-2 I=\left[\begin{array}{rrr}3-2 & -2 & 2 \\ -4 & 1-2 & -2 \\ -5 & 1 & -2-2\end{array}\right]$, row echelon form: $\left[\begin{array}{ccc}1 & 0 & \frac{2}{3} \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 0\end{array}\right]$ so $E_{A}(2)=\left\langle\left\{\left[\begin{array}{c}-2 \\ 2 \\ 3\end{array}\right]\right\}\right\rangle$ and $\gamma_{A}(2)=1$.

Do Two (2) of these "In text, class or homework" problems

M.1. Prove two (2) of the following.
(a) If A is diagonalizable and B is similar to A then B is diagonalizable.
(b) If A is diagonalizable and invertible then A^{-1} is diagonalizable.
(c) Suppose A and B have the same eigenvalues and each eigenvalue has the same algebraic and geometric multiplicity in A as it does in B. If A is diagonalizable, then A and B are similar.
M.2. A square matrix A is idempotent if $A^{2}=A$. Show that if A is an idempotent matrix then the numbers 0 and 1 are both eigenvalues of A and that they are the only eigenvalues of A.
M.3. Theorem ILTLI (Injective Linear Transformations and Linear Independence) tells us that if $T: U \rightarrow$ V is a linear transformation then the image of any linearly independent set is linearly independent. Without using this theorem, prove that if $S=\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ is a linearly independent set in the vector space U and $T: U \rightarrow V$ is an injective linear transformation, then $R=\left\{T\left(\vec{u}_{1}\right), T\left(\vec{u}_{2}\right), T\left(\vec{u}_{3}\right)\right\}$ is a linearly independent set in the vector space V.

Do two (2) of these "Other" problems

T.1. The set $B=\left\{\left[\begin{array}{l}3 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}$ is a basis for \mathbf{C}^{2}.Define a function $T: \mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$ by: if $\vec{x}=a\left[\begin{array}{l}3 \\ 1\end{array}\right]+$ $b\left[\begin{array}{l}1 \\ 3\end{array}\right]$, then $T(\vec{x})=a\left[\begin{array}{l}4 \\ 2\end{array}\right]+b\left[\begin{array}{c}-2 \\ 3\end{array}\right]$. Use the fact (which you do not have to prove) that T is a linear transformation to find the matrix A that satisfies $T(\vec{x})=A \vec{x}$ for every vector $\vec{x} \in \mathbf{C}^{2}$.
T.2. Suppose that A is a 4×4 matrix with exactly two distinct eigenvalues, 6 and -7 and let $E_{A}(6)$ and $E_{A}(-7)$ be the respective eigenspaces.
(a) Write all possible characteristic polynomials of A that are consistent with $E_{A}(6)=3$
(b) Write all possible characteristic polynomials of A that are consistent with $E_{A}(-7)=2$.
T.3. An $n \times n$ matrix A is called nilpotent if, for some positive integer $k, A^{k}=O$, where O is the $n \times n$ zero matrix. Prove that 0 is the only eigenvalue of any nilpotent matrix.

