Mathematics 290-A

Exam 4

Fall 2006

November 14, 2006

Name

Technology used:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.
- When given a choice, be sure to specify which problem(s) you want graded.
- Do any two (2) of these computational problems

C.1. Show that $\begin{bmatrix} -1\\1\\2 \end{bmatrix}$ is an eigenvector for the matrix $\begin{bmatrix} 2 & -6 & 6\\1 & 9 & -6\\-2 & 16 & -13 \end{bmatrix}$ and determine the corresponding eigenvalue.

C.2. Given the subspace V of
$$\mathbf{C}^4$$
 where $V = \left\langle \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix} \right\rangle$, determine the dimension of the subspace V^{\perp}

by finding a basis for V^{\perp} .

C.3. The characteristic polynomial of $A = \begin{bmatrix} -2 & -6 & -6 \\ -3 & 2 & -2 \\ 3 & 2 & 6 \end{bmatrix}$ is $P_A(x) = -(x+2)(x-4)^2$. Find all eigenvalues and determine their algebraic and geometric multiplicities.

Do any two (2) of these problems from the text, homework, or class. You may NOT just cite a theorem or result in the text. You must prove these results.

- M.1. Prove Theorem RMRT, Rank of a Matrix is the Rank of the Transpose: Suppose A is an $m \times n$ matrix. Then $r(A) = r(A^t)$.
- M.2. From Project 11: Explain why the following 5×5 matrix that has a 3×3 zero submatrix is definitely singular (regardless of the 16 non-zeros marked by x's.)

Γ	x	x	x	x	x]
	x	x	x	x	$x \mid$
	0	0	0	x	$x \mid$
	0	0	0	x	$x \mid$
L	0	0	0	x	$x \rfloor$

M.3. Exercise T60 in subsection PD (Properties of Dimension): Suppose that W is a vector space with dimension 5, and U and V are subspaces of W, each of dimension 3. Prove that $U \cap V$ contains a non-zero vector.

Do two (2) of these problems you've not seen before.

T.1. Label the following statements as being true or false.

- (a) The rank of a matrix is equal to the number of its nonzero columns.
- (b) The rank of a matrix is equal to the number of its nonzero rows.
- (c) The $m \times n$ zero matrix is the only $m \times n$ matrix having rank 0.
- (d) Elementary row operations preserve rank.
- (e) An $n \times n$ matrix of rank *n* is invertible.
- (f) It is possible for a 3×5 matrix to have rank 4.
- (g) It is possible for a 5×3 matrix to have rank 4.
- T.2. Suppose that A is a 4×4 matrix with exactly two distinct eigenvalues, 5 and -9 and let $E_A(5)$ and $E_A(-9)$ be the corresponding eigenspaces, respectively.
 - (a) Write all possible characteristic polynomials of A that are consistent with $\dim (E_A(5)) = 3$
 - (b) Write all possible characteristic polynomials of A that are consistent with dim $(E_A(-9)) = 2$.
- T.3. A matrix A is idempotent if $A^2 = A$. Show that the only possible eigenvalues of an idempotent matrix are $\lambda = 0$ and $\lambda = 1$. Then give an example of a matrix that is idempotent and has both of these two values as eigenvalues.
- T.4. An $n \times n$ matrix A is **nilpotent** if, for some positive integer k, $A^k = O$, where O denotes the $n \times n$ zero matrix. Prove that if A is nilpotent, then A is not invertible.