Technology used:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.
- When given a choice, be sure to specify which problem(s) you want graded.

Do any two (2) of these computational problems

C.1. Show that $\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]$ is an eigenvector for the matrix $\left[\begin{array}{rrr}2 & -6 & 6 \\ 1 & 9 & -6 \\ -2 & 16 & -13\end{array}\right]$ and determine the corresponding eigenvalue.
C.2. Given the subspace V of \mathbf{C}^{4} where $V=\left\langle\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]\right\rangle$, determine the dimension of the subspace V^{\perp} by finding a basis for V^{\perp}.
C.3. The characteristic polynomial of $A=\left[\begin{array}{rrr}-2 & -6 & -6 \\ -3 & 2 & -2 \\ 3 & 2 & 6\end{array}\right]$ is $P_{A}(x)=-(x+2)(x-4)^{2}$. Find all eigenvalues and determine their algebraic and geometric multiplicities.

Do any two (2) of these problems from the text, homework, or class.
You may NOT just cite a theorem or result in the text. You must prove these results.
M.1. Prove Theorem RMRT, Rank of a Matrix is the Rank of the Transpose:

Suppose A is an $m \times n$ matrix. Then $r(A)=r\left(A^{t}\right)$.
M.2. From Project 11: Explain why the following 5×5 matrix that has a 3×3 zero submatrix is definitely singular (regardless of the 16 non-zeros marked by x 's.)

$$
\left[\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & x & x \\
0 & 0 & 0 & x & x \\
0 & 0 & 0 & x & x \\
0 & 0 & 0 & x & x
\end{array}\right]
$$

M.3. Exercise T60 in subsection PD (Properties of Dimension): Suppose that W is a vector space with dimension 5, and U and V are subspaces of W, each of dimension 3. Prove that $U \cap V$ contains a non-zero vector.

Do two (2) of these problems you've not seen before.

T.1. Label the following statements as being true or false.
(a) The rank of a matrix is equal to the number of its nonzero columns.
(b) The rank of a matrix is equal to the number of its nonzero rows.
(c) The $m \times n$ zero matrix is the only $m \times n$ matrix having rank 0 .
(d) Elementary row operations preserve rank.
(e) An $n \times n$ matrix of rank n is invertible.
(f) It is possible for a 3×5 matrix to have rank 4 .
(g) It is possible for a 5×3 matrix to have rank 4 .
T.2. Suppose that A is a 4×4 matrix with exactly two distinct eigenvalues, 5 and -9 and let $E_{A}(5)$ and $E_{A}(-9)$ be the corresponding eigenspaces, respectively.
(a) Write all possible characteristic polynomials of A that are consistent with $\operatorname{dim}\left(E_{A}(5)\right)=3$
(b) Write all possible characteristic polynomials of A that are consistent with $\operatorname{dim}\left(E_{A}(-9)\right)=2$.
T.3. A matrix A is idempotent if $A^{2}=A$. Show that the only possible eigenvalues of an idempotent matrix are $\lambda=0$ and $\lambda=1$. Then give an example of a matrix that is idempotent and has both of these two values as eigenvalues.
T.4. An $n \times n$ matrix A is nilpotent if, for some positive integer $k, A^{k}=O$, where O denotes the $n \times n$ zero matrix. Prove that if A is nilpotent, then A is not invertible.

