Mathematics 290

Exam 3

Spring 2007

April 3, 2007

Name

Technology used:

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

The Problems

Do two (2) of these computational problems

- 1. Show that the subset $V = \{p(x) \in P_3 : p(1) = p(-1), p(2) = p(-2)\}$ is a subspace of P_3 .
- 2. Find, with proof, a basis for the subspace $V = \{p(x) \in P_3 : p(1) = p(-1), p(2) = p(-2)\}$ of P_3 .
- 3. Determine if the set $\left\{ \begin{bmatrix} -2 & 3 & 4 \\ -1 & 3 & -2 \end{bmatrix}, \begin{bmatrix} 4 & -2 & 2 \\ 0 & -1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & -2 & -2 \\ 2 & 2 & 2 \end{bmatrix}, \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & -2 \end{bmatrix}, \begin{bmatrix} -1 & 2 & -2 \\ 0 & -1 & -2 \end{bmatrix} \right\}$ is linearly independent in $M_{2,3}$.

Do two (2) of these problems from the text, class, old exams or homework

- 1. Suppose that W is a vector space with dimension 5, and U and V are subspaces of W, each of dimension 3. Prove that $U \cap V$ contains a non-zero vector. Be careful, do not assume that every basis of of U contains a vector in V.
- 2. Suppose that A is an invertible matrix. Prove that the matrix $\overline{(A^t)}$ is invertible and determine what that inverse is.
- 3. Do both of the following.
 - (a) Prove that if V is a vector space and U and W are subspaces of V, then $U \cap W$ is a subspace of V.
 - (b) Give an example of a specific vector space V and specific subspaces U, W where $U \cup W$ is **not** a subspace of V.
- 4. Prove that if A is a square matrix where $N(A^2) = N(A^3)$, then $N(A^4) = N(A^3)$. Here $N(A^2)$ denotes the null space of A^2 .

Do two (2) of these less familiar problems

- 1. Suppose that A is a square matrix and there is a vector \vec{b} such that $LS(A, \vec{b})$ has a unique solution. Prove that A is nonsingular. Note that you **do not** know that $LS(A, \vec{b})$ has a unique solution for every \vec{b} . You are only told that there is a unique solution for one particular \vec{b} .
- 2. Suppose that A is an $n \times n$ matrix and B is an $n \times p$ matrix. Show that the column space of AB is contained in the column space of A.
- 3. Let \vec{v} be a particular vector in \mathbf{C}^m . Show that the set $V = \{\vec{w} \in \mathbf{C}^m : \vec{w} \text{ is orthogonal to } \vec{v}\} = \{\vec{w} \in \mathbf{C}^m : \langle \vec{w}, \vec{v} \rangle = 0\}$ is a subspace of \mathbf{C}^m . The vector space V is called the orthogonal complement of the subspace of \mathbf{C}^m spanned by $\{\vec{v}\}$.
- 4. If $\vec{v} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \in \mathbf{C}^3$, find a basis for the orthogonal complement of the subspace of \mathbf{C}^3 spanned by
 - $\{\vec{v}\}.$ [See problem 3 immediately above this problem.]