April 3, 2007

Technology used:

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

The Problems

Do two (2) of these computational problems

1. Show that the subset $V=\left\{p(x) \in P_{3}: p(1)=p(-1), p(2)=p(-2)\right\}$ is a subspace of P_{3}.
2. Find, with proof, a basis for the subspace $V=\left\{p(x) \in P_{3}: p(1)=p(-1), p(2)=p(-2)\right\}$ of P_{3}.
3. Determine if the set $\left\{\left[\begin{array}{ccc}-2 & 3 & 4 \\ -1 & 3 & -2\end{array}\right],\left[\begin{array}{ccc}4 & -2 & 2 \\ 0 & -1 & 1\end{array}\right],\left[\begin{array}{ccc}-1 & -2 & -2 \\ 2 & 2 & 2\end{array}\right],\left[\begin{array}{ccc}-1 & 1 & 0 \\ -1 & 0 & -2\end{array}\right],\left[\begin{array}{ccc}-1 & 2 & -2 \\ 0 & -1 & -2\end{array}\right]\right.$ is linearly independent in $M_{2,3}$.

Do two (2) of these problems from the text, class, old exams or homework

1. Suppose that W is a vector space with dimension 5 , and U and V are subspaces of W, each of dimension 3. Prove that $U \cap V$ contains a non-zero vector. Be careful, do not assume that every basis of of U contains a vector in V.
2. Suppose that A is an invertible matrix. Prove that the matrix $\overline{\left(A^{t}\right)}$ is invertible and determine what that inverse is.
3. Do both of the following.
(a) Prove that if V is a vector space and U and W are subspaces of V, then $U \cap W$ is a subspace of V.
(b) Give an example of a specific vector space V and specific subspaces U, W where $U \cup W$ is not a subspace of V.
4. Prove that if A is a square matrix where $N\left(A^{2}\right)=N\left(A^{3}\right)$, then $N\left(A^{4}\right)=N\left(A^{3}\right)$. Here $N\left(A^{2}\right)$ denotes the null space of A^{2}.

Do two (2) of these less familiar problems

1. Suppose that A is a square matrix and there is a vector \vec{b} such that $L S(A, \vec{b})$ has a unique solution. Prove that A is nonsingular. Note that you do not know that $L S(A, \vec{b})$ has a unique solution for every \vec{b}. You are only told that there is a unique solution for one particular \vec{b}.
2. Suppose that A is an $n \times n$ matrix and B is an $n \times p$ matrix. Show that the column space of $A B$ is contained in the column space of A.
3. Let \vec{v} be a particular vector in \mathbf{C}^{m}. Show that the set $V=\left\{\vec{w} \in \mathbf{C}^{m}: \vec{w}\right.$ is orthogonal to $\left.\vec{v}\right\}=$ $\left\{\vec{w} \in \mathbf{C}^{m}:\langle\vec{w}, \vec{v}\rangle=0\right\}$ is a subspace of \mathbf{C}^{m}. The vector space V is called the orthogonal complement of the subspace of \mathbf{C}^{m} spanned by $\{\vec{v}\}$.
4. If $\vec{v}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \in \mathbf{C}^{3}$, find a basis for the orthogonal complement of the subspace of \mathbf{C}^{3} spanned by $\{\vec{v}\}$. [See problem 3 immediately above this problem.]
