October 24, 2006

Name

Technology used:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.
- When given a choice, be sure to specify which problem(s) you want graded.

Do any two (2) of these computational problems

C.1. Given matrix

$$
A=\left[\begin{array}{cccc}
1 & 2 & -4 & 3 \\
2 & 4 & -8 & 6 \\
3 & 6 & -12 & 9
\end{array}\right]
$$

(a) Use the fact that $C(A)=R\left(A^{t}\right)$ to find a set S where $<S>=C(A)$.
(b) Use the fact that $C(A)=N(L)$ to find a set T where $<T>=C(A)$.
C.2. Do one (1) of the following:
(a) A square matrix A is defined to be skew-symmetric if $A^{t}=-A$. [Note that this forces the elements on the main diagonal to be zero.]
Show that the set W of skew-symmetric 3×3 matrices is a subspace of $M_{3,3}$.
(b) An infinite sequence is said to be a geometric sequence if it has the form ($a, a r, a r^{2}, a r^{3}, \cdots$) for some complex numbers a and r.
Show that the set W of all geometric sequences is NOT a subspace of the vector space C^{∞} of all infinite sequences with complex entries.
C.3. Compute the inverse of the following matrix or determine that it is not invertible by hand.

$$
\left[\begin{array}{cccc}
1 & 1 & 2 & 3 \\
0 & -1 & 0 & 0 \\
2 & 2 & 5 & 4 \\
0 & 3 & 0 & 1
\end{array}\right]
$$

Do any two (2) of these problems from the text, homework, or class.
You may NOT just cite a theorem or result in the text. You must prove these results.
M.1. Prove Theorem AIU, Additive Inverses are Unique:

Suppose that V is a vector space. For each $u \in V$, the additive inverse, $-u$, is unique.
M.2. Prove that if A is a square matrix where $N\left(A^{2}\right)=N\left(A^{3}\right)$ (the null space of A^{2} is the same set as the null space of $\left.A^{3}\right)$ then $N\left(A^{4}\right) \subset N\left(A^{3}\right)$.
M.3. Find a spanning set, S, for the vector subspace W of $M_{3,3}$ where $W=\left\{A \in M_{3,3}: A^{t}=-A\right\}$ of skew-symmetric 3×3 matrices. [You have not seen this problem before but it is very similar to examples done in class.]

Do two (2) of these problems you've not seen before.

T.1. Prove that if A is $n \times m, B$ is $m \times p$ and $A B=O_{n \times p}$ then $C(B) \subset N(A)$.That is, the column space of B is a subset of the Null space of A.
T.2. Given a square matrix A, prove both of the following.
(a) $N(A) \subset N\left(A^{2}\right)$
(b) $C\left(A^{2}\right) \subset C(A)$
T.3. Suppose V is a vector space, α is a complex number and W is a subspace of V. Show that the set $\alpha W=\{\alpha \vec{w}: \vec{w} \in W\}$ is a subspace of V.

