Mathematics 290-A

Exam 2

Fall 2006

October 3, 2006

Name

Technology used:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.
- When given a choice, be sure to specify which problem(s) you want graded.

Do any three (3) of these computational problems

C.1. Do all of the following.

- (a) Show that the set of vectors $S = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} -2\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} -2\\3\\1 \end{bmatrix} \right\}$ is linearly dependent.
- (b) Find two vectors \vec{w}_1, \vec{w}_2 that are both in S and for which $\langle S \rangle = \langle T \rangle$, where $T = \{\vec{w}_1, \vec{w}_2\}$.
- (c) Write one of the extra vectors in S as a linear combination of \vec{w}_1 , and \vec{w}_2 .

C.2. Write all of the following complex numbers in the form a + bi.

(a) 2(2-3i) - 7(6+2i)

(b)
$$\frac{4+3i}{2-i}$$

- (c) \sqrt{i} [Hint: write $(a + bi)^2 = i$ and solve a system of equations.]
- C.3. The vectors \vec{u}_1, \vec{u}_2 , and \vec{u}_3 below form an orthonormal set. Use the Gram-Schmidt procedure to find a vector \vec{u}_4 so that $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$ is an **orthonormal** set which has the same span as $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{v}_4\}$.

$$\vec{u}_1 = \begin{bmatrix} 1/2\\ 1/2\\ 1/2\\ 1/2\\ 1/2 \end{bmatrix}, \quad \vec{u}_2 = \begin{bmatrix} 1/2\\ 1/2\\ -1/2\\ -1/2 \end{bmatrix}, \quad \vec{u}_3 = \begin{bmatrix} 1/2\\ -1/2\\ 1/2\\ -1/2 \end{bmatrix}, \quad \vec{v}_4 = \begin{bmatrix} 1\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}$$

The Gram-Schmidt formula is

$$\vec{u}_i = \vec{v}_i - \left(\frac{\langle \vec{v}_i, \vec{u}_1 \rangle}{\langle \vec{u}_1, \vec{u}_1 \rangle}\right) \vec{u}_1 - \dots - \left(\frac{\langle \vec{v}_i, \vec{u}_{i-1} \rangle}{\langle \vec{u}_{i-1}, \vec{u}_{i-1} \rangle}\right) \vec{u}_{i-1}$$

C.4. Compute the following matrix-vector product by hand in two ways.

$$\begin{bmatrix} 1 & 1 & 1 \\ -4 & 1 & 1 \\ 2 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix}.$$

Do any two (2) of these problems from the text, homework, or class.

You may NOT just cite a theorem or result in the text. You must prove these results.

- M.1. Suppose $S = {\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p}$ is a linearly independent set and that $\mathbf{v} \notin \langle S \rangle$. Prove the set $W = {\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p, \mathbf{v}}$ is a linearly independent set.
- M.2. Suppose $S = \{ \overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3 \}$ is a linearly independent set in R^5 . Is the set of vectors $2\overrightarrow{v}_1 + \overrightarrow{v}_2 + 3\overrightarrow{v}_3, \ \overrightarrow{v}_2 + 5\overrightarrow{v}_3, \ 3\overrightarrow{v}_1 + \overrightarrow{v}_2 + 2\overrightarrow{v}_3$ linearly dependent or independent?
- M.3. Prove Theorem TMA, Transpose and Matrix Addition.

Suppose that A and B are $m \times n$ matrices. Then $(A + B)^t = A^t + B^t$.

Do one (1) of these problems you've not seen before.

T.1. Suppose A is a square matrix of size n satisfying $A^2 = AA = O$. Prove that the only vector \vec{x} satisfying $(I_n - A)\vec{x} = \vec{0}$ is the zero vector.

T.2. Recall that $\begin{bmatrix} a \\ b \\ c \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$. Now explain why the fact that $\begin{bmatrix} 3 & 2 & 0 & 1 & 0 & 0 \\ -4 & -2 & -2 & 0 & 1 & 0 \\ -5 & -2 & -4 & 0 & 0 & 1 \end{bmatrix}$ has reduced row-echelon form $\begin{bmatrix} 1 & 0 & 2 & 0 & 1 & -1 \\ 0 & 1 & -3 & 0 & -\frac{5}{2} & 2 \\ 0 & 0 & 0 & 1 & 2 & -1 \end{bmatrix}$ tells us the only vectors $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ that can be in the span of $S = \left\{ \begin{bmatrix} 3 \\ -4 \\ -5 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \\ -2 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \\ -4 \end{bmatrix} \right\}$ are those where a + 2b - c = 0.