October 3, 2006

Name

Technology used:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.
- When given a choice, be sure to specify which problem(s) you want graded.

Do any three (3) of these computational problems
C.1. Do all of the following.
(a) Show that the set of vectors $S=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right]\right\}$ is linearly dependent.
(b) Find two vectors \vec{w}_{1}, \vec{w}_{2} that are both in S and for which $<S>=<T>$, where $T=\left\{\vec{w}_{1}, \vec{w}_{2}\right\}$.
(c) Write one of the extra vectors in S as a linear combination of \vec{w}_{1}, and \vec{w}_{2}.
C.2. Write all of the following complex numbers in the form $a+b i$.
(a) $2(2-3 i)-7(6+2 i)$
(b) $\frac{4+3 i}{2-i}$
(c) \sqrt{i} [Hint: write $(a+b i)^{2}=i$ and solve a system of equations.]
C.3. The vectors \vec{u}_{1}, \vec{u}_{2}, and \vec{u}_{3} below form an orthonormal set. Use the Gram-Schmidt procedure to find a vector \vec{u}_{4} so that $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}, \vec{u}_{4}\right\}$ is an orthonormal set which has the same span as $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}, \vec{v}_{4}\right\}$.

$$
\vec{u}_{1}=\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right], \quad \vec{u}_{2}=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right], \quad \vec{u}_{3}=\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right], \vec{v}_{4}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

The Gram-Schmidt formula is

$$
\vec{u}_{i}=\vec{v}_{i}-\left(\frac{<\vec{v}_{i}, \vec{u}_{1}>}{<\vec{u}_{1}, \vec{u}_{1}>}\right) \vec{u}_{1}-\cdots-\left(\frac{<\vec{v}_{i}, \vec{u}_{i-1}>}{<\vec{u}_{i-1}, \vec{u}_{i-1}>}\right) \vec{u}_{i-1}
$$

C.4. Compute the following matrix-vector product by hand in two ways.

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
-4 & 1 & 1 \\
2 & -3 & 5
\end{array}\right]\left[\begin{array}{l}
5 \\
2 \\
3
\end{array}\right]
$$

Do any two (2) of these problems from the text, homework, or class.
You may NOT just cite a theorem or result in the text. You must prove these results.
M.1. Suppose $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}\right\}$ is a linearly independent set and that $\mathbf{v} \notin<S>$. Prove the set $W=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{p}, \mathbf{v}\right\}$ is a linearly independent set.
M.2. Suppose $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is a linearly independent set in R^{5}. Is the set of vectors $2 \vec{v}_{1}+\vec{v}_{2}+$ $3 \vec{v}_{3}, \vec{v}_{2}+5 \vec{v}_{3}, 3 \vec{v}_{1}+\vec{v}_{2}+2 \vec{v}_{3}$ linearly dependent or independent?
M.3. Prove Theorem TMA, Transpose and Matrix Addition.

Suppose that A and B are $m \times n$ matrices. Then $(A+B)^{t}=A^{t}+B^{t}$.

Do one (1) of these problems you've not seen before.

T.1. Suppose A is a square matrix of size n satisfying $A^{2}=A A=O$. Prove that the only vector \vec{x} satisfying $\left(I_{n}-A\right) \vec{x}=\overrightarrow{0}$ is the zero vector.
T.2. Recall that $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=a\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+b\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+c\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Now explain why the fact that $\left[\begin{array}{rrrrrr}3 & 2 & 0 & 1 & 0 & 0 \\ -4 & -2 & -2 & 0 & 1 & 0 \\ -5 & -2 & -4 & 0 & 0 & 1\end{array}\right]$ has reduced row-echelon form $\left[\begin{array}{cccccc}1 & 0 & 2 & 0 & 1 & -1 \\ 0 & 1 & -3 & 0 & -\frac{5}{2} & 2 \\ 0 & 0 & 0 & 1 & 2 & -1\end{array}\right]$ tells us the only vectors $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ that can be in the span of $S=\left\{\left[\begin{array}{c}3 \\ -4 \\ -5\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ -2\end{array}\right],\left[\begin{array}{c}0 \\ -2 \\ -4\end{array}\right]\right\}$ are those where $a+2 b-c=0$.

