Exam 1

Spring 2007

January 30, 2007

Name

Technology used:

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do BOTH of these "Computational" Problems

- C.1. Solve the following system of linear equations by hand. Write the solution set using column vector notation. Make sure you copy the equations correctly.
 - $x_4 + 2x_5 x_6 = 2$ $x_1 + 2x_2 + x_5 - x_6 = 0$ $x_1 + 2x_2 + 2x_3 - x_5 + x_6 = 2$ $x_1 + 2x_2 + 2x_3 + x_4 + x_5 = 4$
- C.2. Find a 4×5 matrix A, that is **not** in reduced row-echelon form, whose null space is the set

$$\left\{ \begin{bmatrix} 2x_2 - 6x_4 \\ x_2 \\ -5x_4 \\ x_4 \\ 7x_2 + x_4 \end{bmatrix} : x_2, \ x_4 \in \mathbf{C} \right\}$$

Do Two (2) of these "In text, class or homework" problems

- M.1. Suppose A and B are $m \times n$ matrices. Give a detailed explanation of why if A is row-equivalent to B then B is row-equivalent to A.
- M.2. Suppose that B is an $m \times n$ matrix in reduced row-echelon form. Build a new, likely smaller, $k \times l$ matrix C as follows. Keep any collection of k adjacent rows, $k \leq m$. From these rows, keep columns 1 through $l, l \leq n$. Prove that C is in reduced row-echelon form.
- M.3. Prove that a system of linear equations is homogeneous if and only if it has the zero vector as a solution.

Do BOTH of these "Not in Text" problems

- T.1. Suppose that A is the coefficient matrix of a consistent linear system of equations and that two of the columns of A are identical. Prove that there must be an infinite number of solutions to the system of equations.
- T.2. Let A be a 4×4 matrix and let \vec{b} and \vec{c} be vectors of constants with 4 entries each.
 - (a) If we are told that the linear system of equations $LS(A, \vec{b})$ has a unique solution, what can you say about the solutions set of $LS(A, \vec{c})$? Why?
 - (b) If we are told that the linear system of equations $LS(A, \vec{b})$ is inconsistent, what can you say about the solutions set of $LS(A, \vec{c})$? Why?
 - (c) Now suppose *B* is a 4×3 matrix and we know that $LS(B, \vec{b})$ has a unique solution. What can you say about the solution set of $LS(B, \vec{c})$? Why?