April 17, 2008

Exam 4

Technology used: _____ Only write on one side of each page.

• Show all of your work. Calculators may be used for numerical calculations and answer checking only.

Problems

- 1. [15 points] Let f be a function on two variables that has continuous partial derivatives of all orders and consider the points A(1,3), B(3,4), C(1,6) and D(6,14). The directional derivative of f at A in the direction of the vector \overrightarrow{AB} is $3\sqrt{5}$, and the directional derivative at A in the direction of \overrightarrow{AC} is 25. Find the directional derivative at A in the direction of the vector \overrightarrow{AD} .
- 2. [15 points] Do **one** (1) of the following.
 - (a) Find parametric equations for the line tangent to the curve of intersection of the surfaces $x^2 + y^2 = 4$ and $x^2 + y^2 z = 0$ at the point $(\sqrt{2}, \sqrt{2}, 4)$.
 - (b) Around the point (1,0) in the plane
 - i. Is $f(x,y) = x^2 (y+1)$ more sensitive to changes in x or to changes in y? Why?
 - ii. What ratio of dx to dy will make df equal zero at (1, 0).
- 3. [15 points] Find the absolute maximum and minimum values, if they exist, of

$$f\left(x,y\right) = 2x^3 + y^4$$

where the domain is the set $D = \{(x, y) : y^2 \le 1 - x^2\}.$

- 4. [15 points] Do one (1) of the following using the method of Lagrange multipliers.
 - (a) Find the dimensions of the rectangle of largest area that can be inscribed in the ellipse $x^2/9 + y^2/25 = 1$ with sides parallel to the coordinate axes. What is the largest area?
 - (b) Find the point(s) on the surface whose equation is xyz = 1 closest to the origin. Although this set is unbounded, you may use the geometric fact that there is an absolute minimum value.
- 5. [15 points] Compute the average value of $f(x, y) = x \sin(xy)$ over the rectangle $R = [0, \pi/2] \times [0, 1]$.

6. [15 points] Evaluate the double integral.

$$\int_0^3 \int_{\sqrt{x/3}}^1 e^{(y^3)} \, dy \, dx$$

7. [10 points] Set up iterated integral(s) for the volume of the solid that remains when a square hole of side length 2 is drilled through the center of a sphere of radius $\sqrt{2}$.