Technology used:

Only write on one side of each page.

- Show all of your work. Calculators may be used for numerical calculations and answer checking only.

Problems

1. [15 points] Let f be a function on two variables that has continuous partial derivatives of all orders and consider the points $A(1,3), B(3,4), C(1,6)$ and $D(6,14)$. The directional derivative of f at A in the direction of the vector $\overrightarrow{A B}$ is $3 \sqrt{5}$, and the directional derivative at A in the direction of $\overrightarrow{A C}$ is 25 . Find the directional derivative at A in the direction of the vector $\overrightarrow{A D}$.
2. [15 points] Do one (1) of the following.
(a) Find parametric equations for the line tangent to the curve of intersection of the surfaces $x^{2}+y^{2}=4$ and $x^{2}+y^{2}-z=0$ at the point $(\sqrt{2}, \sqrt{2}, 4)$.
(b) Around the point $(1,0)$ in the plane
i. Is $f(x, y)=x^{2}(y+1)$ more sensitive to changes in x or to changes in y ? Why?
ii. What ratio of $d x$ to $d y$ will make $d f$ equal zero at $(1,0)$.
3. [15 points] Find the absolute maximum and minimum values, if they exist, of

$$
f(x, y)=2 x^{3}+y^{4}
$$

where the domain is the set $D=\left\{(x, y): y^{2} \leq 1-x^{2}\right\}$.
4. [15 points] Do one (1) of the following using the method of Lagrange multipliers.
(a) Find the dimensions of the rectangle of largest area that can be inscribed in the ellipse $x^{2} / 9+y^{2} / 25=1$ with sides parallel to the coordinate axes. What is the largest area?
(b) Find the point(s) on the surface whose equation is $x y z=1$ closest to the origin. Although this set is unbounded, you may use the geometric fact that there is an absolute minimum value.
5. [15 points] Compute the average value of $f(x, y)=x \sin (x y)$ over the rectangle $R=[0, \pi / 2] \times$ $[0,1]$.
6. [15 points] Evaluate the double integral.

$$
\int_{0}^{3} \int_{\sqrt{x / 3}}^{1} e^{\left(y^{3}\right)} d y d x
$$

7. [10 points] Set up iterated integral(s) for the volume of the solid that remains when a square hole of side length 2 is drilled through the center of a sphere of radius $\sqrt{2}$.
