Technology used:

Only write on one side of each page.

- Show all of your work. Calculators may be used for numerical calculations and answer checking only.

Do six (6) of the following problems

1. $\left(8,7\right.$ points) Given the function $f(x, y, z)=\ln \left(\frac{x^{2}}{25}+\frac{y^{2}}{16}-\frac{z}{9}\right)$
(a) Find an equation for the level surface of f that passes through the point $(5 \sqrt{2}, 4,9)$.
(b) Draw a reasonably careful sketch of that level surface.
2. (3, 12 points) Suppose $f(x, y)=\frac{9 x^{2}-y^{2}}{x^{2}+4 y^{2}}$ for all $(x, y) \neq(0,0)$.
(a) Is there a number k that makes the function g given below continuous at $(0,0)$?

$$
g(x, y)=\left\{\begin{array}{cl}
f(x, y) & \text { if }(x, y) \neq(0,0) \\
k & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

(b) Why or why not?
3. Reparamatrize the following curve by arclength. That is, express this curve in terms of the arclength parameter $s(t)=\int_{0}^{t}\left\|\vec{r}^{\prime}(\tau)\right\| d \tau$.

$$
\vec{r}(t)=(\cos t+t \sin (t)) \widehat{\mathbf{i}}+(\sin t-t \cos t) \widehat{\mathbf{j}}, \quad \frac{\pi}{2} \leq t \leq \pi
$$

4. (5,5,5 points) Find \mathbf{T}, \mathbf{N} and the curvature κ for the parametrized space curve $\vec{r}(t)=$ $\left(\cos ^{3} t\right) \widehat{\mathbf{i}}+\left(\sin ^{3} t\right) \widehat{\mathbf{j}}, 0<t<\pi / 2$.
5. If $w=\sin (2 x+y), x=\sin (\pi s)$, and $y=r s$, find the value of the following second partial derivative at the point where $r=\pi$ and $s=1$.

$$
\frac{\partial^{2} w}{\partial r \partial s}
$$

6. Write a chain rule formula for $\frac{\partial w}{\partial t}$ if $w=f(x, y), x=g(t, s)$, and $y=h(t, s, x)$ are all differentiable functions of their respective input variables.
7. The space curve $\vec{r}(t)=\left(\frac{1}{3} t^{3}\right) \widehat{\mathbf{i}}+\left(t^{2}\right) \widehat{\mathbf{j}}+(2 t) \widehat{\mathbf{k}}$ has unit tangent vector $\mathbf{T}(t)=\frac{t^{2}}{t^{2}+2} \widehat{\mathbf{i}}+\frac{2 t}{t^{2}+2} \widehat{\mathbf{j}}+$ $\frac{2}{t^{2}+2} \widehat{\mathbf{k}}$ and taking the derivative we find that

$$
\frac{d \mathbf{T}}{d t}=\left(\frac{4 t}{\left(t^{2}+2\right)^{2}}\right) \hat{\mathbf{i}}+\left(\frac{-2 t^{2}+4}{\left(t^{2}+2\right)^{2}}\right) \hat{\mathbf{j}}+\left(\frac{-4 t}{\left(t^{2}+2\right)^{2}}\right) \widehat{\mathbf{k}}
$$

(a) What is an equation of the osculating plane for this curve at the point $x=2$?
(b) What are the center and radius of the osculating circle (also known as the circle of curvature) for this curve at the point where $t=2$?
8. We showed in class that if $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$ is a smooth parametrized space curve satisfying $\|\vec{r}(t)\|=c$ for every t in the domain of \vec{r} then $\vec{r}(t)$ and $\vec{r}^{\prime}(t)$ are perpendicular vectors for every t in that domain. By using components and integration, show that the converse is also true by proving the following.
Theorem If $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$ is a smooth parametrized space curve in which $\vec{r}(t)$. $\vec{r}^{\prime}(t)=0$ for every t in the domain of \vec{r}, then there is a constant c for which $\|\vec{r}(t)\|=c$ for every t in the domain of \vec{r}.

