November 13, 2012

Technology used:

Only

write on one side of each page.

Show all of your work.
Calculators may be used for numerical calculations and answer checking only.

You MUST do A. and one part of B.

A. [10 points] Reverse the order of integration in the following double integral Do Not evaluate the integral.

$$
\int_{0}^{3} \int_{\sqrt{x / 3}}^{1} e^{\left(y^{3}\right)} d y d x
$$

B. Do one (1) of the following:
(a) [7,8 points] Find and classify all local maxima, local minima and saddle points of the function $f(x, y)=x^{4}+y^{4}+4 x y$.
(b) [15 points] Find the absolute minimum value of the function $f(x, y)=48 x y-32 x^{3}-24 y^{2}$ on the rectangular plate $0 \leq x \leq 1,0 \leq y \leq 1$.

Do any FIVE (5) of the following

1. [10, 5 points] Given $f(x, y)=49-x^{2}-y^{2}$
(a) If possible, maximize $f(x, y)$ subject to the constraint $x+3 y=10$.
(b) Explain why or why not this constrained optimization has an absolute maximum.
2. [15 points] The area charge density function for a region in the $x y$-plane bounded by the cardioid $r=1+\sin (\theta)$ is proportional to the square of the distance from the origin with the maximum σ_{0} occuring at the point with polar coordinates $[2, \pi / 2]$.Express the total charge as an iterated double integral in polar coordinates. Do Not evaluate your integral.
3. [15 points] It can be shown that the improper integral $I=\int_{0}^{\infty} e^{-x^{2}} d x$ converges. The usual way to determine the value is to first calculate its square

$$
\begin{aligned}
I^{2} & =\left(\int_{0}^{\infty} e^{-x^{2}} d x\right)\left(\int_{0}^{\infty} e^{-y^{2}} d y\right) \\
& =\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y
\end{aligned}
$$

Evaluate the last integral using polar coordinates and solve the resulting equation for I.
4. [15 points] Change the order of integration to the order $d z d x d y$, but do not evaluate, the following triple integral.

$$
\int_{0}^{2} \int_{0}^{4-x^{2}} \int_{0}^{x} \frac{\sin (2 z)}{4-z} d y d z d x
$$

5. [15 points] Each point of the portion of the solid sphere $\rho \leq a$ that lies between the cone $\phi=\frac{\pi}{3}$ and the plane $z=0$ has a volume charge density proportional to the distance of the point from the origin. The maximum volume charge density of δ_{0} occurs along the circle where the cone meets the sphere. Find the total charge on the solid.
6. [15 points] Let n be a positive integer. Set up and evaluate a definite integral that gives the length of a helix that wraps 17 times around the lateral side of a right circular cylinder of radius R and height H with a constant pitch (so each wrap rises the same distance up the cylinder). Your answer should not have any integral signs and will involve the letters R and H.
