Technology used:

Only write on one side of each page.

- Show all of your work. Calculators may be used for numerical calculations and answer checking only.

Do BOTH of these problems

A. 1 (10 points) If \vec{a}, \vec{b}, and \vec{c} are vectors in \mathbf{R}^{3}, state whether each expression is meaningful. If it is, state whether it is a scalar or a vector.
(a) $\vec{a} \cdot(\vec{b} \times \vec{c})$
(b) $\vec{a} \times(\vec{b} \cdot \vec{c})$
(c) $\vec{a} \times(\vec{b} \times \vec{c})$
(d) $(\vec{a} \cdot \vec{b}) \times \vec{c}$
(e) $(\vec{a} \cdot \vec{b}) \times(\vec{c} \cdot \vec{d})$
(f) $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})$
(g) $[(\vec{a} \times \vec{b}) \cdot \vec{c}] \vec{c} \cdot \vec{a}$
A. 2 (10 points) Convert three (3) of these equations to rectangular coordinates.
(a) $z=r^{2} \sin (2 \theta)$
(b) $r=\sin (\theta)$
(c) $\rho^{2} \sin ^{2}(\phi)=1$
(d) $\rho^{2} \sin (\phi) \cos (\phi) \cos (\theta)=1$

Do any two (2) of the following

B. 1 Express the tangent line to the curve $\vec{F}(t)=\left\langle t^{2}, e^{t-1}, \ln (t)\right\rangle$ at the point where $t=1$ in parametric form.
B. 2 Write an equation for the plane that passes through the point $P(6,0,-2)$ and contains the line $x=t, y=\frac{1}{2} t, z=\frac{1}{3} t$.
B. 3 What is the distance (measured along a line orthogonal to both) between the parallel planes $x+2 y-3 z=1$ and $x+2 y-3 z=50$? [The answer is not 49.]

Do any three (3) of the following

C. 1 Identify three of the following quadric surfaces by name and quickly sketch one of them.
(a) $y^{2}+z^{2}=1-4 x^{2}$
(b) $y^{2}+z^{2}=x$
(c) $y^{2}+z^{2}=1$
(d) $x^{2}+z^{2}=1+y^{2}$
C. 2 Suppose $\vec{r}^{\prime \prime}(t)=\left(3 t^{2}+4\right) \mathbf{i}+\mathbf{j}+4 t \mathbf{k}$. If $\vec{r}(0)=\mathbf{i}+\mathbf{j}$, and $\vec{r}^{\prime}(0)=\overrightarrow{0}$ find the function $\vec{r}(t)$.
C. 3 Find the point of intersection of $\vec{r}_{1}(t)=<t, 1-t, 3+t^{2}>$ and $\vec{r}_{2}(s)=<3-s, s-2, s^{2}>$ and compute the angle between the tangent vectors at this point.
C. 4 The paraboloid $2 y=(x-1)^{2}+z^{2}$ and the plane $x+z=1$ intersect along a curve in \mathbf{R}^{3}. Find a parametrization $\vec{F}(t)$ for this curve.

