October 11, 2012

Technology used:

Only write on one side of each page.
Show all of your work.
Calculators may be used for numerical calculations and answer checking only.

1. [10 points] Simplify the following vector \mathbf{v} and express it using the unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$.

$$
\mathbf{v}=(\langle 1,3,-1\rangle \cdot\langle-1,0,-2\rangle)\langle 2,1,4\rangle+(5\langle-3,-2,-1\rangle-3\langle 1,2,3\rangle)
$$

2. [15 points] Draw a tree diagram and write a Chain Rule formula for the derivative $\frac{\partial w}{\partial t}$ where

$$
w=g(x, y, t), \quad x=h(u, v, t), \quad y=f(v, t)
$$

3. [8, 7 points $]$ Do both of the following
(a) Write an equation for the plane that is tangent to the surface $z=e^{-\left(x^{2}+y^{2}\right)}$ at the point $(0,0,1)$.
(b) A certain plane passes through the point $P_{0}(2,3,-1)$ and the projection of the vector $\overrightarrow{O P}$ onto the normal vector of the plane is $\mathbf{i}+5 \mathbf{j}-2 \mathbf{k}$. Write an equation in standard form of the plane.
4. [8, 7 points] Do both of the following.
(a) Articulate how gradient vectors are related to level curves/surfaces and greatest rate of change.
(b) Compute the directional derivative of the function $z=f(x, y)=\cos \left(x y^{2}\right)$ at the point $(0,0,1)$ and in the direction of the vector $\mathbf{v}=4 \mathbf{i}-3 \mathbf{j}$.
5. [9,6 points] Do both of the following
(a) Around the point $(1,0)$, is $f(x, y)=x^{2}(y+1)$ more sensitive to changes in x or to changes in y ? Why?
(b) What ratio of $d x$ to $d y$ will make $d f$ equal 0 at $(1,0)$?
6. [15 points] Do one (1) of the following
(a) Suppose $\vec{r}(t)$ is a vector-valued function with the property that for every t in the domain of \vec{r}, $\|\vec{r}(t)\|=4$.
Express $\|\vec{r}(t)\|^{2}$ as a dot product and take the derivative of the result to show that for every t in the domain, $\vec{r}(t)$ is orthogonal to it's derivative $\vec{r}^{\prime}(t)$.
(b) If \mathbf{u}_{1} and \mathbf{u}_{2} are orthogonal unit vectors and $\mathbf{v}=a \mathbf{u}_{1}+b \mathbf{u}_{2}$, show that $\mathbf{v}=\left(\mathbf{v} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{v} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}$.
7. [8, 7 points $]$ If $\mathbf{a}=\langle 1,4\rangle$ and $\mathbf{b}=\langle 2,-3\rangle$
(a) Compute the vector projection, $\mathbf{c}=\operatorname{proj}_{\mathbf{b}} \mathbf{a}$, of \mathbf{a} onto \mathbf{b}.
(b) Show that \mathbf{b} is orthogonal to $\mathbf{a}-\mathbf{c}$ by using the dot product.
