February 7, 2008

Technology used:

Only

write on one side of each page.

- Show all of your work. Calculators may be used for numerical calculations and answer checking only.

Do any six (6) of the following

1. Sketch the graph of one (1) of the following polar equations. Include any tangent lines to the curve at the origin.
(a) $r=\sin (3 \theta)$
(b) $r^{2}=4 \cos (2 \theta)$
2. Do one (1) of the following.
(a) Find the area inside one loop of $r=\sin (3 \theta)$
(b) Find the area inside one loop of $r^{2}=4 \cos (2 \theta)$
3. Use simplified equations or inequalities to describe the set of points $P(x, y, z)$ that are the same distance from the point $P_{1}(1,2,3)$ as from $P_{2}(-1.0,0)$. What is your geometric intuition for the shape of this set of points?
4. Do one of the following.
(a) Find the coordinates of the point Q that is $3 / 8$ of the way along the line segment from $P_{1}(2,2,3)$ to $P_{2}(-2,5,-1)$.
(b) Find a number c for which the angle between the vectors $\langle 1,2,1\rangle$ and $\langle 1,0, c\rangle$ equal to $\pi / 3$.
5. Given $\vec{a}=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{6}}\right\rangle$, and $\left.\vec{b}=<0, \frac{1}{\sqrt{2}},-1\right\rangle$ find
(a) The scalar component (scalar projection) of \vec{b} in the direction of \vec{a}.
(b) The vector projection of \vec{b} in the direction of \vec{a}.
6. Write $\vec{b}=<8,4,-12>$ as the sum of a vector parallel to $\vec{a}=<1,2,-1>$ and a vector orthogonal to \vec{a}.
7. Find the angle between the diagonal of a cube and one of the edges the diagonal meets at a vertex.
8. Given vectors \vec{a}, \vec{b}, and \vec{c}, use the dot product to write formulas for the following.
(a) The vector projection of \vec{a} onto \vec{b}.
(b) A vector with the length of \vec{a} and the direction of \vec{b}.
