September 13, 2012

Technology used:

Only write on one side of each page.
Show all of your work.
Calculators may be used for numerical calculations and answer checking only.

1. [10 points] State the definition of the partial derivative of $f(x, y)$ with respect to x at the point $\left(x_{0}, y_{0}\right)$.
2. [15 points] Use the distance formula to obtain an equation (in a standard form) for the set of points $P(x, y, z)$ that are equidistant from the points $P_{1}(1,2,3)$ and $P_{2}(-1,0,0)$. What geometric surface is the shape of this set of points?
3. [15 points] Write an equation in slopes-intercept form for the plane that passes through the three points $(2,1,3),(4,5,3),(-1,1,6)$.
4. [9, 6 points] Display the values of the function $f(x, y)=1-|x|$ in two ways:
(a) by carefully drawing an assortment of at least four level curves in the function's domain and labeling each level curve with its function value and
(b) by sketching the surface $z=f(x, y)$.
5. [15 points] Find the following limit by first rewriting the fraction

$$
\lim _{(x, y) \longrightarrow(2,-4)} \frac{y+4}{x^{2} y-x y+4 x^{2}-4 x}
$$

6. [15 points] By considering different paths of approach, show that the function given below has no limit as $(x, y, z) \longrightarrow(0,0,0)$.

$$
f(x, y, z)=\frac{x y+x z+y z}{x^{2}+y^{2}+z^{2}}
$$

7. [15 points] The one-dimensional wave equation in physics displayed below is used to model wave motions where w is the wave height, x is the distance variable, t is the time variable, and c is the velocity with which the waves are propagated. Show that the function $w=f(x, t)=\sin (x+c t)$ is a solution of the wave equation.

$$
\text { Wave equation: } \quad \frac{\partial^{2} w}{\partial t^{2}}=c^{2} \frac{\partial^{2} w}{\partial x^{2}}
$$

