Spring 2000

Final Exam

May 10, 2000

Name

Technology used:

Textbook/Notes used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. **Only write on one side of each page.**

The Problems

- 1. Do **two** of the following problems.
 - (a) Let V be a vector space and W a **non-empty** subset of V. Suppose that W is closed under both the addition and scalar multiplication of V. Prove that W is a subspace of V.
 - (b) An **orthogonal** matrix is an $n \times n$ matrix A satisfying $A^T A = I_n$. Prove the determinant of any orthogonal matrix must be either 1 or -1.
 - (c) Do all of the following:
 - i. If the rank of a 5×3 matrix A is 3, what is rref(A)?
 - ii. If the rank of a 4×4 matrix A is 4, what is rref(A)?
 - iii. Consider a linear system of equations $A \overrightarrow{x} = \overrightarrow{b}$, where A is a 4×3 matrix. We are told that rank $[A:\overrightarrow{b}] = 4$. How many solutions does this system have?
 - (d) Let W be a p-dimensional subspace of \mathbf{R}^n . If \overrightarrow{v} is a vector in W for which $\overrightarrow{v}^T \overrightarrow{w} = 0$ for every vector \overrightarrow{w} in W, show that $\overrightarrow{v} = \overrightarrow{\theta}$.
- 2. Do **one** of the following.
 - (a) Let $\overrightarrow{v}_1, \ldots, \overrightarrow{v}_m$ be a basis for a subspace V of \mathbb{R}^n . Show that $\overrightarrow{x} \in \mathbb{R}^n$ is in V^{\perp} if and only if \overrightarrow{x} orthogonal to the m basis vectors. That is, prove $\overrightarrow{x} \cdot \overrightarrow{v} = \overrightarrow{0}$ for all $\overrightarrow{v} \in V$ if and only if

$$\overrightarrow{x} \cdot \overrightarrow{v}_i = 0$$
, for $i = 1, \dots, m$.

- (b) Let $T : \mathbf{R}^n \longrightarrow \mathbf{R}^m$ be a linear transformation. Suppose that L is the inverse function of T. Show that $L : \mathbf{R}^m \longrightarrow \mathbf{R}^n$ must also be a linear transformation. (You may **not** use the fact that L has a matrix representation until you know that L is linear.)
- (c) Suppose *L* is the line in \mathbb{R}^3 that contains the vector $\begin{bmatrix} 3\\4\\5 \end{bmatrix}$ and *T* is the linear transformation $T(\overrightarrow{x}) = A\overrightarrow{x}$ that projects \overrightarrow{x} onto the line *L*.

i. Use geometric reasoning to explain why the set of vectors, $\mathbf{B} = \left\{ \begin{bmatrix} 3\\4\\5 \end{bmatrix}, \begin{bmatrix} -5\\0\\3 \end{bmatrix}, \begin{bmatrix} -4\\3\\0 \end{bmatrix} \right\}$ consists of eigenvectors for T with corresponding eigenvalues 1, 0, 0 respectively. [Hint: the projection of $\begin{bmatrix} -4 & 3 & 0 \end{bmatrix}^T$ onto L is $\overrightarrow{\theta} = 0 \begin{bmatrix} -4 & 3 & 0 \end{bmatrix}^T$ because $\begin{bmatrix} -4 & 3 & 0 \end{bmatrix}^T$ is perpendicular to $[3 \ 4 \ 5]^T$.]

ii. The matrix $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is the matrix for T with respect to the ordered eigenbasis in

part (a.) in that it satisfies $[T(\vec{x})]_{\mathbf{B}} = B[\vec{x}]_{\mathbf{B}}$ for every vector $\vec{x} \in \mathbb{R}^3$. What is the matrix S used to give $S^{-1}AS = B$?

iii. Use the above information to find the standard matrix A for the transformation T. That is, find the matrix A for which $T(\overrightarrow{x}) = A \overrightarrow{x}$ for every \overrightarrow{x} in \mathbb{R}^3 .

3. Do **two** of the following.

(a) Find an orthonormal basis for the null space of

$$A = \begin{bmatrix} 1 & 3 & 10 & 11 & 9 \\ -1 & 2 & 5 & 4 & 1 \\ 2 & -1 & -1 & 1 & 4 \end{bmatrix}$$

(b) Give a formula for a linear transformation $T: P_3 \longrightarrow P_2$ so that the matrix Q below is the matrix of T with respect to the natural (also known as "standard") bases for P_3 and P_2 .

$$Q = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 \\ -1 & 1 & 0 & -1 \end{bmatrix}$$

- (c) Let $S: P_2 \longrightarrow P_3$ be given by $S(p) = x^3 p'' x^2 p' + 3p$. Find the matrix representation of S with respect to the bases B, C where the basis for P_2 is $B = \{x + 1, x + 2, x^2\}$ and the basis for P_3 is $C = \{1, x, x^2, x^3\}$.
- (d) Let $T: V \longrightarrow V$ be a linear transformation and $B = \{f_1, f_2, f_3, f_4\}$ a basis for V. Find the matrix representation for T with respect to the basis B if $T(f_1) = f_2$, $T(f_2) = f_3$, $T(f_3) = f_1 + f_2$, $T(f_4) = f_1 + 3f_4.$
- 4. Do **two** of the following.
 - (a) Find the (real) eigenvalues and eigenspaces of the linear transformation $L: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ given by $L(A) = A + A^{T}$.
 - (b) The set $V = \text{span}\{\cos(t), \sin(t), t\cos(t), t\sin(t)\}$ is an abstract subspace of $C(-\infty, \infty)$. Consider the linear transformation $T: V \to V$ given by

$$T\left(f\right) = f'' + f.$$

- i. Find a basis for the null space of T.
- ii. What is the dimension of the range of T?
- (c) Let U, V, W be abstract vector spaces and $S: U \longrightarrow V, T: V \longrightarrow W$ linear transformations. Show that the null space of S is contained in the null space of $T \circ S$. That is, $N(S) \subset N(T \circ S)$.
- (d) Let $T: V \longrightarrow W$ be a linear transformation. Prove that if T carries linearly independent subsets of V to linearly independent subsets of W, then T must be one-to-one.