Technology used:

Textbook/Notes used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

1. Do two of the following problems.
(a) Let V be a vector space and W a non-empty subset of V. Suppose that W is closed under both the addition and scalar multiplication of V. Prove that W is a subspace of V.
(b) An orthogonal matrix is an $n \times n$ matrix A satisfying $A^{T} A=I_{n}$. Prove the determinant of any orthogonal matrix must be either 1 or -1 .
(c) Do all of the following:
i. If the rank of a 5×3 matrix A is 3 , what is $\operatorname{rref}(A)$?
ii. If the rank of a 4×4 matrix A is 4 , what is $\operatorname{rref}(A)$?
iii. Consider a linear system of equations $A \vec{x}=\vec{b}$, where A is a 4×3 matrix. We are told that $\operatorname{rank}[A: \vec{b}]=4$. How many solutions does this system have?
(d) Let W be a p-dimensional subspace of \mathbf{R}^{n}. If \vec{v} is a vector in W for which $\vec{v}^{T} \vec{w}=0$ for every vector \vec{w} in W, show that $\vec{v}=\vec{\theta}$.
2. Do one of the following.
(a) Let $\vec{v}_{1}, \ldots, \vec{v}_{m}$ be a basis for a subspace V of R^{n}. Show that $\vec{x} \in R^{n}$ is in V^{\perp} if and only if \vec{x} orthogonal to the m basis vectors. That is, prove $\vec{x} \cdot \vec{v}=\overrightarrow{0}$ for all $\vec{v} \in V$ if and only if

$$
\vec{x} \cdot \vec{v}_{i}=0, \text { for } i=1, \ldots, m
$$

(b) Let $T: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{m}$ be a linear transformation. Suppose that L is the inverse function of T. Show that $L: \mathbf{R}^{m} \longrightarrow \mathbf{R}^{n}$ must also be a linear transformation. (You may not use the fact that L has a matrix representation until you know that L is linear.)
(c) Suppose L is the line in R^{3} that contains the vector $\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$ and T is the linear transformation $T(\vec{x})=A \vec{x} \quad$ that projects \vec{x} onto the line L.
i. Use geometric reasoning to explain why the set of vectors, $\mathbf{B}=\left\{\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right],\left[\begin{array}{c}-5 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{c}-4 \\ 3 \\ 0\end{array}\right]\right\}$ consists of eigenvectors for T with corresponding eigenvalues $1,0,0$ respectively. [Hint: the projection of $\left[\begin{array}{lll}-4 & 3 & 0\end{array}\right]^{T}$ onto L is $\vec{\theta}=0\left[\begin{array}{ccc}-4 & 3 & 0\end{array}\right]^{T}$ because $\left[\begin{array}{ccc}-4 & 3 & 0\end{array}\right]^{T}$ is perpendicular to $\left.\left[\begin{array}{lll}3 & 4 & 5\end{array}\right]^{T}.\right]$
ii. The matrix $B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ is the matrix for T with respect to the ordered eigenbasis in part (a.) in that it satisfies $[T(\vec{x})]_{\mathbf{B}}=B[\vec{x}]_{\mathbf{B}}$ for every vector $\vec{x} \in R^{3}$. What is the matrix S used to give $S^{-1} A S=B$?
iii. Use the above information to find the standard matrix A for the transformation T. That is, find the matrix A for which $T(\vec{x})=A \vec{x}$ for every \vec{x} in R^{3}.
3. Do two of the following.
(a) Find an orthonormal basis for the null space of

$$
A=\left[\begin{array}{lllll}
1 & 3 & 10 & 11 & 9 \\
-1 & 2 & 5 & 4 & 1 \\
2 & -1 & -1 & 1 & 4
\end{array}\right]
$$

(b) Give a formula for a linear transformation $T: P_{3} \longrightarrow P_{2}$ so that the matrix Q below is the matrix of T with respect to the natural (also known as "standard") bases for P_{3} and P_{2}.

$$
Q=\left[\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 1 \\
-1 & 1 & 0 & -1
\end{array}\right]
$$

(c) Let $S: P_{2} \longrightarrow P_{3}$ be given by $S(p)=x^{3} p^{\prime \prime}-x^{2} p^{\prime}+3 p$. Find the matrix representation of S with respect to the bases B, C where the basis for P_{2} is $B=\left\{x+1, x+2, x^{2}\right\}$ and the basis for P_{3} is $C=\left\{1, x, x^{2}, x^{3}\right\}$.
(d) Let $T: V \longrightarrow V$ be a linear transformation and $B=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ a basis for V. Find the matrix representation for T with respect to the basis B if $T\left(f_{1}\right)=f_{2}, T\left(f_{2}\right)=f_{3}, T\left(f_{3}\right)=f_{1}+f_{2}$, $T\left(f_{4}\right)=f_{1}+3 f_{4}$.
4. Do two of the following.
(a) Find the (real) eigenvalues and eigenspaces of the linear transformation $L: R^{2 \times 2} \rightarrow R^{2 \times 2}$ given by $L(A)=A+A^{T}$.
(b) The set $V=\operatorname{span}\{\cos (t), \sin (t), t \cos (t), t \sin (t)\}$ is an abstract subspace of $C(-\infty, \infty)$. Consider the linear transformation $T: V \rightarrow V$ given by

$$
T(f)=f^{\prime \prime}+f
$$

i. Find a basis for the null space of T.
ii. What is the dimension of the range of T ?
(c) Let U, V, W be abstract vector spaces and $S: U \longrightarrow V, T: V \longrightarrow W$ linear transformations. Show that the null space of S is contained in the null space of $T \circ S$. That is, $N(S) \subset N(T \circ S)$.
(d) Let $T: V \longrightarrow W$ be a linear transformation. Prove that if T carries linearly independent subsets of V to linearly independent subsets of W, then T must be one-to-one.

