Technology used:

Directions: Only write on one side of each page. Use terminology correctly. Partial credit is awarded for correct approaches so justify your steps.
You are to turn in six problems.

Do any two (2) of these computational problems

C.1. Do both of the following.
(a) Suppose \vec{v} is an eigenvector of the $n \times n$ matrix A with associated eigenvalue 3 . Show that \vec{v} is also an eigenvector for the matrix $A^{2}+4 I_{n}$. What is the associated eigenvalue?
(b) Show that $\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]$ is an eigenvector for the matrix $\left[\begin{array}{rrr}2 & -6 & 6 \\ 1 & 9 & -6 \\ -2 & 16 & -13\end{array}\right]$ and determine the corresponding eigenvalue.
C.2. The characteristic polynomial of $\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ is $\lambda^{2}(\lambda-1)^{2}$. Find the the geometric and algebraic multiplicities of each eigenvalue and determine a basis for each eigenspace. Do NOT use technology.
C.3. Show the following function $T: P_{2} \rightarrow \mathbf{C}^{3}$ is a linear transformation.

$$
T(f)=\left[\begin{array}{c}
f(0) \\
f^{\prime}(1) \\
f(2)
\end{array}\right]
$$

C.4. Do one of the following.
(a) Find a basis for the kernel of the linear transformation $T: P_{2} \rightarrow \mathbf{C}^{3}$ given by

$$
T(f)=\left[\begin{array}{c}
f(0) \\
f^{\prime}(1) \\
f(2)
\end{array}\right] .
$$

(b) Find a basis for the range of the linear transformation $T: P_{2} \rightarrow \mathbf{C}^{3}$ given by

$$
T(f)=\left[\begin{array}{c}
f(0) \\
f^{\prime}(1) \\
f(2)
\end{array}\right] .
$$

Do two (2) of these problems from the text, homework, or class.

M.1. Prove Theorem CILTI, Composition of Injective Linear Transformations is Injective.

Suppose that $T: U \rightarrow V$ and $S: V \rightarrow W$ are injective linear transformations. Then $(S \circ T): U \rightarrow W$ is an injective linear transformation.
M.2. Prove Theorem CSLTS, Composition of Surjective Linear Transformations is Surjective.

Suppose that $T: U \rightarrow V$ and $S: V \rightarrow W$ are surjective linear transformations. Then $(S \circ T): U \rightarrow W$ is a surjective linear transformation.
M.3. Prove Theorem KILT, Kernel of an Injective Linear Transformation.

Suppose that $T: U \rightarrow V$ is a linear transformation. Then T is injective if and only if the kernel of T is trivial, $K(T)=\{\mathbf{0}\}$.
M.4. Suppose that A and B are similar matrices. Prove that A^{5} and B^{5} are similar matrices.

Do two (2) of these problems you've not seen before.

T.1. Prove that a function $T: V \rightarrow W$ is a linear transformation if and only if for all scalars $c, d \in \mathbf{C}$ and for all vectors $\vec{v}, \vec{w} \in V$ we have $T(c \vec{v}+d \vec{w})=c T(\vec{v})+d T(\vec{w})$.
T.2. An $n \times n$ matrix A is nilpotent if, for some positive integer $k, A^{k}=O$, where O denotes the $n \times n$ zero matrix. Prove that if A is nilpotent, then A is not invertible.
T.3. An $n \times n$ matrix A is called nilpotent if, for some positive integer $k, A^{k}=O$, where O is the $n \times n$ zero matrix. Prove that 0 is the only eigenvalue of any nilpotent matrix.
T.4. Suppose that A is a 4×4 matrix with exactly two distinct eigenvalues, 5 and -9 and let $E_{A}(5)$ and $E_{A}(-9)$ be the corresponding eigenspaces, respectively. Write all possible characteristic polynomials of A, in factored form, that are consistent with $\operatorname{dim}\left(E_{A}(-9)\right)=2$.

